ﻻ يوجد ملخص باللغة العربية
It is expected in physics that the homogeneous quantum Boltzmann equation with Fermi-Dirac or Bose-Einstein statistics and with Maxwell-Boltzmann operator (neglecting effect of the statistics) for the weak coupled gases will converge to the homogeneous Fokker-Planck-Landau equation as the Planck constant $hbar$ tends to zero. In this paper and the upcoming work cite{HLP2}, we will provide a mathematical justification on this semi-classical limit. Key ingredients into the proofs are the new framework to catch the {it weak projection gradient}, which is motivated by Villani cite{V1} to identify the $H$-solution for Fokker-Planck-Landau equation, and the symmetric structure inside the cubic terms of the collision operators.
This paper is dedicated to the construction of global weak solutions to the quantum Navier-Stokes equation, for any initial value with bounded energy and entropy. The construction is uniform with respect to the Planck constant. This allows to perform
Departing from the weak solution, we prove the uniqueness, smoothing estimates and the global dynamics for the non cutoff spatially homogeneous Boltzmann equation with moderate soft potentials. Our results show that the behavior of the solution(inclu
Let M = R n or possibly a Riemannian, non compact manifold. We consider semi-excited resonances for a h-differential operator H(x, hD x ; h) on L 2 (M) induced by a non-degenerate periodic orbit $gamma$ 0 of semi-hyperbolic type, which is contained i
We consider a space-homogeneous gas of {it inelastic hard spheres}, with a {it diffusive term} representing a random background forcing (in the framework of so-called {em constant normal restitution coefficients} $alpha in [0,1]$ for the inelasticity
Following earlier work, we view two dimensional non-linear sigma model with target space $cM$ as a single particle relativistic quantum mechanics in the corresponding free loop space $cLM$. In a natural semi-classical limit ($hbar=alpha to 0$) of thi