ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamics of liquid 1-ethyl-3-methylimidazolium acetate measured with implanted-ion $^8$Li $beta$-NMR

143   0   0.0 ( 0 )
 نشر من قبل Derek Fujimoto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the application of implanted-ion $beta$-detected NMR as a probe of ionic liquid molecular dynamics through the measurement of $^8$Li spin-lattice relaxation (SLR) and resonance in 1-ethyl-3-methylimidazolium acetate. The motional narrowing of the resonance, and the local maxima in the SLR rate, $1/T_1$, imply a sensitivity to sub-nanosecond Li$^+$ solvation dynamics. From an analysis of $1/T_1$, we extract an activation energy ${E_A = 74.8 pm 1.5}$ meV and Vogel-Fulcher-Tammann constant ${T_{mathrm{VFT}} = 165.8 pm 0.9}$ K, in agreement with the dynamic viscosity of the bulk solvent. Near the melting point, the lineshape is broad and intense, and the form of the relaxation is non-exponential, reflective of our sensitivity to heterogeneous dynamics near the glass transition. The depth resolution of this technique may later provide a unique means of studying nanoscale phenomena in ionic liquids.



قيم البحث

اقرأ أيضاً

Several calorimetric measurements have shown that 1-ethyl-3-methylimidazolium dicyanamide, [C2C1im][N(CN)2], is a glass-forming liquid, even though it is a low-viscous liquid at room temperature. Here we found slow crystallization during cooling of [ C2C1im][N(CN)2] along Raman spectroscopy measurements. The low-frequency range of the Raman spectrum shows that the same crystalline phase is obtained at 210 K either by cooling or by reheating the glass (cold-crystallization). Another crystalline phase is formed at ca. 260 K just prior the melting at 270 K. X-ray diffraction and calorimetric measurements confirm that there are two crystalline phases of [C2C1im][N(CN)2]. The Raman spectra indicate that polymorphism is related to [C2C1im]+ with the ethyl chain on the plane of the imidazolium ring (the low-temperature crystal) or non-planar (the high-temperature crystal). The structural reason for the glass-forming ability of [C2C1im][N(CN)2], despite of the relatively simple molecular structures of the ions, was pursued by quantum chemistry calculations and molecular dynamics (MD) simulations. Density functional theory (DFT) calculations were performed for ionic pairs in order to draw free energy surfaces of the anion around the cation. The MD simulations using a polarizable model provided maps of occurrence of anions around cations. Both the quantum and classical calculations suggest that the delocalization of preferred positions of the anion around the cation, which adopts different conformations of the ethyl chain, is on the origin of the crystallization being hampered during cooling and the resulting glass-forming ability of [C2C1im][N(CN)2].
We report $beta$-detected nuclear magnetic resonance ($beta$-NMR) measurements in Bi$_{2}$Se$_{3}$:Ca (BSC) and Bi$_{2}$Te$_{3}$:Mn (BTM) single crystals using $^{8}$Li$^{+}$ implanted to depths on the order of 100 nm. Above $sim 200$ K, spin-lattice relaxation (SLR) reveals diffusion of $^{8}$Li$^{+}$, with activation energies of $sim 0.4$ eV ($sim 0.2$ eV) in BSC (BTM). At lower temperatures, the nuclear magnetic resonance (NMR) properties are those of a heavily doped semiconductor in the metallic limit, with Korringa relaxation and a small, negative, temperature-dependent Knight shift in BSC. From this, we make a detailed comparison with the isostructural tetradymite Bi$_{2}$Te$_{2}$Se (BTS) [McFadden et al., Phys Rev. B 99, 125201 (2019)]. In the magnetic BTM, the effects of the dilute Mn moments predominate, but remarkably the $^{8}$Li signal is not wiped out through the magnetic transition at 13 K, with a prominent critical peak in the SLR that is suppressed in a high applied field. This detailed characterization of the $^{8}$Li NMR response is an important step towards using depth-resolved $beta$-NMR to study the low-energy properties of the chiral topological surface state (TSS). With the bulk NMR response now established in several Bi$_{2}$Ch$_{3}$ tetradymite topological insulators (TIs), the prospect of directly probing their chiral TSS using the depth resolution afforded by $beta$-NMR remains strong.
We report measurements of the dynamics of isolated $^{8}$Li$^{+}$ in single crystal rutile TiO$_{2}$ using $beta$-detected NMR. From spin-lattice relaxation and motional narrowing, we find two sets of thermally activated dynamics: one below 100 K; an d one at higher temperatures. At low temperature, the activation barrier is $26.8(6)$ meV with prefactor $1.23(5) times 10^{10}$ s$^{-1}$. We suggest this is unrelated to Li$^{+}$ motion, and rather is a consequence of electron polarons in the vicinity of the implanted $^{8}$Li$^{+}$ that are known to become mobile in this temperature range. Above 100 K, Li$^{+}$ undergoes long-range diffusion as an isolated uncomplexed cation, characterized by an activation energy and prefactor of $0.32(2)$ eV and $1.0(5) times 10^{16}$ s$^{-1}$, in agreement with macroscopic diffusion measurements. These results in the dilute limit from a microscopic probe indicate that Li$^{+}$ concentration does not limit the diffusivity even up to high concentrations, but that some key ingredient is missing in the calculations of the migration barrier. The anomalous prefactors provide further insight into both Li$^{+}$ and polaron motion.
Using ion-implanted $^8$Li $beta$-detected NMR, we study the evolution of the correlated metallic state of LaNiO$_3$ in a series of LaNiO$_3$/LaAlO$_3$ superlattices as a function of bilayer thickness. Spin-lattice relaxation measurements in an appli ed field of 6.55 T reveal two equal amplitude components: one with metallic ($T$-linear) $1/T_{1}$, and a second with a more complex $T$-dependence. The metallic character of the slow relaxing component is only weakly affected by the LaNiO$_3$ thickness, while the fast component is much more sensitive, exhibiting the opposite temperature dependence (increasing towards low $T$) in the thinnest, most magnetic samples. The origin of this bipartite relaxation is discussed.
183 - Oren Ofer , K.H. Chow , I. Fan 2012
We report {beta} detected nuclear magnetic resonance ({beta}NMR) measurements of 8Li+ implanted into high purity Pt. The frequency of the 8Li {beta}NMR resonance and the spin-lattice relaxation rates 1/T1 were measured at temperatures ranging from 3 to 300 K. Remarkably, both the spin-lattice relaxation rate and the Knight shift K depend linearly on temperature T although the bulk susceptibility does not. K is found to scale with the Curie-Weiss dependence of the Pt susceptibility extrapolated to low temperatures. This is attributed to a defect response of the enhanced paramagnetism of Pt, i.e. the presence of the interstitial Li+ locally relieves the tendency for the Curie-Weiss susceptibility to saturate at low T . We propose that the low temperature saturation in c{hi} of Pt may be related to an interband coupling between the s and d bands that is disrupted locally by the presence of the Li+.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا