ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Temperature Phase Transitions of the Ionic Liquid 1-Ethyl-3-methylimidazolium Dicyanamide

123   0   0.0 ( 0 )
 نشر من قبل Kalil Bernardino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several calorimetric measurements have shown that 1-ethyl-3-methylimidazolium dicyanamide, [C2C1im][N(CN)2], is a glass-forming liquid, even though it is a low-viscous liquid at room temperature. Here we found slow crystallization during cooling of [C2C1im][N(CN)2] along Raman spectroscopy measurements. The low-frequency range of the Raman spectrum shows that the same crystalline phase is obtained at 210 K either by cooling or by reheating the glass (cold-crystallization). Another crystalline phase is formed at ca. 260 K just prior the melting at 270 K. X-ray diffraction and calorimetric measurements confirm that there are two crystalline phases of [C2C1im][N(CN)2]. The Raman spectra indicate that polymorphism is related to [C2C1im]+ with the ethyl chain on the plane of the imidazolium ring (the low-temperature crystal) or non-planar (the high-temperature crystal). The structural reason for the glass-forming ability of [C2C1im][N(CN)2], despite of the relatively simple molecular structures of the ions, was pursued by quantum chemistry calculations and molecular dynamics (MD) simulations. Density functional theory (DFT) calculations were performed for ionic pairs in order to draw free energy surfaces of the anion around the cation. The MD simulations using a polarizable model provided maps of occurrence of anions around cations. Both the quantum and classical calculations suggest that the delocalization of preferred positions of the anion around the cation, which adopts different conformations of the ethyl chain, is on the origin of the crystallization being hampered during cooling and the resulting glass-forming ability of [C2C1im][N(CN)2].



قيم البحث

اقرأ أيضاً

We demonstrate the application of implanted-ion $beta$-detected NMR as a probe of ionic liquid molecular dynamics through the measurement of $^8$Li spin-lattice relaxation (SLR) and resonance in 1-ethyl-3-methylimidazolium acetate. The motional narro wing of the resonance, and the local maxima in the SLR rate, $1/T_1$, imply a sensitivity to sub-nanosecond Li$^+$ solvation dynamics. From an analysis of $1/T_1$, we extract an activation energy ${E_A = 74.8 pm 1.5}$ meV and Vogel-Fulcher-Tammann constant ${T_{mathrm{VFT}} = 165.8 pm 0.9}$ K, in agreement with the dynamic viscosity of the bulk solvent. Near the melting point, the lineshape is broad and intense, and the form of the relaxation is non-exponential, reflective of our sensitivity to heterogeneous dynamics near the glass transition. The depth resolution of this technique may later provide a unique means of studying nanoscale phenomena in ionic liquids.
158 - Stefano Mossa 2018
Ionic liquids constrained at interfaces or restricted in subnanometric pores are increasingly employed in modern technologies, including energy applications. Understanding the details of their behavior in these conditions is therefore critical. By us ing molecular dynamics simulation, we clarify theoretically and numerically the effect of confinement at the nanoscale on the static and dynamic properties of an ionic liquid. In particular, we focus on the interplay among the size of the ions, the slit pore width, and the length scale associated to the long-range organization of polar and apolar domains present in the bulk material. By modulating both the temperature and the extent of the confinement, we demonstrate the existence of a complex reentrant phase behavior, including isotropic liquid and liquid-crystal-like phases with different symmetries. We show how these changes impact the relative organization of the ions, with substantial modifications of the Coulombic ordering, and their dynamical state. In this respect, we reveal a remarkable decoupling of the dynamics of the counterions, pointing to very different roles played by these in charge transport under confinement. We finally discuss our findings in connection with very recent experimental and theoretical work.
We investigate paramagnetic metal-insulator transitions in the infinite-dimensional ionic Hubbard model at finite temperatures. By means of the dynamical mean-field theory with an impurity solver of the continuous-time quantum Monte Carlo method, we show that an increase in the interaction strength brings about a crossover from a band insulating phase to a metallic one, followed by a first-order transition to a Mott insulating phase. The first-order transition turns into a crossover above a certain critical temperature, which becomes higher as the staggered lattice potential is increased. Further, analysis of the temperature dependence of the energy density discloses that the intermediate metallic phase is a Fermi liquid. It is also found that the metallic phase is stable against strong staggered potentials even at very low temperatures.
The material dispersion of the [Ckmim][BF4] (k = 2,3,4,6,7,8,10) family of ionic liquids is measured at several temperatures over a broad spectral range from 300 nm to 1550 nm. The experimental curves are fitted to a modified three-resonance Sellmeie r model to understand the effect of temperature and alkyl chain length in the dispersion. From the parameters of the fitting, we analyze the influence that the different constituents of these ionic liquids have in the dispersion behaviour. In addition, a semi-empirical approach combining simulated electronic polarizabilities and experimental densities for predicting the material dispersion is successfully tested by direct comparison with the experimental results. The limitations of this method are analyzed in terms of the structure of the ionic liquids. The results of this work aim to increase our knowledge about how the structure of an ionic liquid influences its material dispersion. Understanding this influence is fundamental to produce ionic liquids with tailored optical properties.
Interaction non-additivity in the chemical context means that binding of certain atom to a reference atom cannot be fully predicted from the interactions of these two atoms with other atoms. This constitutes one of key phenomena determining an identi ty of our world, which would have been much poorer otherwise. Ionic systems provide a good example of the interaction non-additivity in most cases due to electron transfer and delocalization effects. We report Born-Oppenheimer molecular dynamics (BOMD) simulations of LiCl, NaCl, and KCl at 300, 1500, and 2000 K. We show that our observations originate from interplay of thermal motion during BOMD and cation nature. In the case of alkali cations, ionic nature plays a more significant role than temperature. Our results bring fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry and engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا