ﻻ يوجد ملخص باللغة العربية
We consider a class of ansatze for the construction of exact solutions of the Einstein-nonlinear $sigma$-model system with an arbitrary cosmological constant in (3+1) dimensions. Exploiting a geometric interplay between the $SU(2)$ field and Killing vectors of the spacetime reduces the matter field equations to a single scalar equation (identically satisfied in some cases) and simultaneously simplifies Einsteins equations. This is then exemplified over various classes of spacetimes, which allows us to construct stationary black holes with a NUT parameter and uniform black strings, as well as time-dependent solutions such as Robinson-Trautman and Kundt spacetimes, Vaidya-type radiating black holes and certain Bianchi~IX cosmologies. In addition to new solutions, some previously known ones are rederived in a more systematic way.
An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear $SU(2)$ field is regular everywhere and depends explicitly
We present and analyze a class of exact spacetimes which describe accelerating black holes with a NUT parameter. First, we verify that the intricate metric found by Chng, Mann and Stelea in 2006 indeed solves Einsteins vacuum field equations of Gener
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in $d
We investigate exact non-stationary quantum states of vacuum toroidal black holes with a negative cosmological constant in arbitrary dimensions using the framework of throat quantization pioneered by Louko and Makela for Schwarzschild black holes. Th
The non-rotating BTZ solution is expressed in terms of coordinates that allow for an arbitrary time-dependent scale factor in the boundary metric. We provide explicit expressions for the coordinate transformation that generates this form of the metri