ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact time-dependent states for throat quantized toroidal AdS black holes

284   0   0.0 ( 0 )
 نشر من قبل Hideki Maeda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate exact non-stationary quantum states of vacuum toroidal black holes with a negative cosmological constant in arbitrary dimensions using the framework of throat quantization pioneered by Louko and Makela for Schwarzschild black holes. The system is equivalent to a harmonic oscillator on the half line, in which the central singularity is resolved quantum mechanically by imposing suitable boundary conditions that preserve unitarity. We identify two suitable families of exact time-dependent wave functions with Dirichlet or Neumann boundary conditions at the location of the classical singularity. We find that for highly non-stationary states of large-mass black holes, quantum fluctuations are not negligible in one family, while they are greatly suppressed in the other. The latter, therefore, may provide candidates for describing the dynamics of semi-classical black holes.



قيم البحث

اقرأ أيضاً

An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear $SU(2)$ field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A $U(1)$ gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favored with respect to the corresponding black hole with vanishing Pionic field.
We match collapsing inhomogeneous as well as spatially homogeneous but anisotropic spacetimes to vacuum static exteriors with a negative cosmological constant and planar or hyperbolic symmetry. The collapsing interiors include the inhomogeneous solut ions of Szekeres and of Barnes, which in turn include the Lemaitre-Tolman and the McVittie solutions. The collapse can result in toroidal or higher genus asymptotically AdS black holes.
We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT appro ximated by a radiation fluid. We find a sequence of configurations without a horizon in thermal equilibrium (CFT stars), followed by a sequence of configurations with a horizon. We discuss the thermodynamic properties of the system and how back reaction effects alter the space-time structure. We also provide an interpretation of the above sequence of solutions in terms of the AdS/CFT correspondence. The dual five-dimensional description is given by the Karch-Randall model, in which a sequence of five-dimensional floating black holes followed by a sequence of brane localized black holes correspond to the above solutions.
Adopting the throat quantization pioneered by Louko and Makela, we derive the mass and area spectra for the Schwarzschild-Tangherlini black hole and its anti-de~Sitter (AdS) generalization in arbitrary dimensions. We obtain exact spectra in three spe cial cases: the three-dimensional BTZ black hole, toroidal black holes in any dimension, and five-dimensional Schwarzshild-Tangherlini(-AdS) black holes. For the remaining cases the spectra are obtained for large mass using the WKB approximation. For asymptotically flat black holes, the area/entropy has an equally spaced spectrum, as expected from previous work. In the asymptotically AdS case on the other hand, it is the mass spectrum that is equally spaced. Our exact results for the BTZ black hole with Dirichlet and Neumann boundary conditions are consistent with the spacing of the spectra of the corresponding operators in the dual CFT.
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the sca lar field we solve the Einstein equations and we determine the scalar potential. Thermodynamically we show that there is a critical temperature below which there is a phase transition of a black hole with hyperbolic horizon to the new hairy black hole configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا