ﻻ يوجد ملخص باللغة العربية
Angular power spectra computed from Planck HFI 353 GHz intensity and polarization maps produce a TB correlation that can be approximated by a power law. Whether the observed TB correlation is an induced systematic feature or a physical property of Galactic dust emission is of interest both for cosmological and Galactic studies. We investigate the large angular scale E- and B-mode morphology of microwave polarized thermal dust emission, and relate it to physical quantities of polarization angle and polarization fraction. We use empirical models of polarized dust to show that dust polarization angle is a key factor in producing the TB correlation. A small sample of both simulated and observed polarization angle maps are combined with 353 GHz intensity and dust polarization fraction to produce a suite of maps from which we compute TB and EB. Model realizations that produce a positive TB correlation are common and can result from large-scale (>5 degree) structure in the polarization angle. The TB correlation appears robust to introduction of individual intensity, polarization angle and polarization fraction model components that are independent of the 353 GHz observations. We conclude that the observed TB correlation is likely the result of large-scale Galactic dust polarization properties.
The gravitational properties of a torus are investigated. It is shown that a torus can be formed from test particles orbiting in the gravitational field of a central mass. In this case, a toroidal distribution is achieved because of the significant s
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of whi
Dust emission is the main foreground for cosmic microwave background (CMB) polarization. Its statistical characterization must be derived from the analysis of observational data because the precision required for a reliable component separation is fa
Particle acceleration by turbulence plays a role in many astrophysical environments. The non- linear evolution of the underlying cosmic-ray spectrum is complex and can be described by a Fokker-Planck equation, which in general has to be solved numeri
We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors ass