ترغب بنشر مسار تعليمي؟ اضغط هنا

BAT AGN Spectroscopic Survey: XVI. General Physical Characteristics of BAT Blazars

60   0   0.0 ( 0 )
 نشر من قبل Vaidehi Sharan Paliya Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently released 105-month {it Swift}-Burst Alert Telescope (BAT) all-sky hard X-ray survey catalog presents an opportunity to study astrophysical objects detected in the deepest look at the entire hard X-ray (14$-$195 keV) sky. Here we report the results of a multifrequency study of 146 blazars from this catalog, quadrupling the number compared to past studies, by utilizing recent data from the {it Fermi}-Large Area Telescope (LAT), Swift-BAT, and archival measurements. In our $gamma$-ray analysis of $sim$10 years of the LAT data, 101 are found as $gamma$-ray emitters, whereas, 45 remains LAT undetected. We model the broadband spectral energy distributions with a synchrotron-inverse Compton radiative model. On average, BAT detected sources host massive black holes ($M_{rm bh}sim10^9$ M$_{odot}$) and luminous accretion disks ($L_{rm d}sim10^{46}$ erg s$^{-1}$). At high-redshifts ($z>2$), BAT blazars host more powerful jets with luminous accretion disks compared to those detected only with the {it Fermi}-LAT. We find good agreement in the black hole masses derived from the single-epoch optical spectroscopic measurements and standard accretion disk modeling approaches. Other physical properties of BAT blazars are similar to those known for {it Fermi}-LAT detected objects.



قيم البحث

اقرأ أيضاً

Hard X-ray ($geq 10$ keV) observations of Active Galactic Nuclei (AGN) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, h as currently detected 838 AGN. We report here on the broad-band X-ray (0.3-150 keV) characteristics of these AGN, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band ($leq 10$ keV) with 70-month averaged Swift/BAT data. The non-blazar AGN of our sample are almost equally divided into unobscured ($N_{rm H}< 10^{22}rm cm^{-2}$) and obscured ($N_{rm H}geq 10^{22}rm cm^{-2}$) AGN, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGN.
We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS) which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected ($E>14$ keV) active galactic nuclei (AGN). We use the deviation from a linear broad H$alpha$-to-X-ray relationship as an estimate of the maximum optical obscuration towards the broad line region and compare the $A_{rm V}$ to the hydrogen column densities ($N_{rm H}$) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by $A_{rm V}$ towards the broad line region (BLR) are often orders of magnitude less than the columns measured towards the X-ray emitting region indicating a small scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1--1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting the broad line region itself is providing extra obscuration towards the X-ray corona. The fraction of X-ray absorbed Type 1 AGN remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable broad line region covering fraction.
Accreting supermassive black holes (SMBHs), also known as active galactic nuclei (AGN), are generally surrounded by large amounts of gas and dust. This surrounding material reprocesses the primary X-ray emission produced close to the SMBH and gives r ise to several components in the broadband X-ray spectra of AGN, including a power-law possibly associated with Thomson-scattered radiation. In this work, we study the properties of this scattered component for a sample of 386 hard-X-ray-selected, nearby ($z sim 0.03$) obscured AGN from the 70-month Swift/BAT catalog. We investigate how the fraction of Thomson-scattered radiation correlates with different physical properties of AGN, such as line-of-sight column density, X-ray luminosity, black hole mass, and Eddington ratio. We find a significant negative correlation between the scattering fraction and the column density. Based on a large number of spectral simulations, we exclude the possibility that this anti-correlation is due to degeneracies between the parameters. The negative correlation also persists when considering different ranges of luminosity, black hole mass, and Eddington ratio. We discuss how this correlation might be either due to the angle dependence of the Thomson cross-section or to more obscured sources having a higher covering factor of the torus. We also find a positive correlation between the scattering fraction and the ratio of [OIII] $lambda$5007 to X-ray luminosity. This result is consistent with previous studies and suggests that the Thomson-scattered component is associated with the narrow-line region.
Theory predicts that a supermassive black hole binary (SMBHB) could be observed as a luminous active galactic nucleus (AGN) that periodically varies on the order of its orbital timescale. In X-rays, periodic variations could be caused by mechanisms i ncluding relativistic Doppler boosting and shocks. Here we present the first systematic search for periodic AGNs using $941$ hard X-ray light curves (14-195 keV) from the first 105 months of the Swift Burst Alert Telescope (BAT) survey (2004-2013). We do not find evidence for periodic AGNs in Swift-BAT, including the previously reported SMBHB candidate MCG+11$-$11$-$032. We find that the null detection is consistent with the combination of the upper-limit binary population in AGNs in our adopted model, their expected periodic variability amplitudes, and the BAT survey characteristics. We have also investigated the detectability of SMBHBs against normal AGN X-ray variability in the context of the eROSITA survey. Under our assumptions of a binary population and the periodic signals they produce which have long periods of hundreds of days, up to $13$% true periodic binaries can be robustly distinguished from normal variable AGNs with the ideal uniform sampling. However, we demonstrate that realistic eROSITA sampling is likely to be insensitive to long-period binaries because longer observing gaps reduce their detectability. In contrast, large observing gaps do not diminish the prospect of detecting binaries of short, few-day periods, as 19% can be successfully recovered, the vast majority of which can be identified by the first half of the survey.
We present the host galaxy molecular gas properties of a sample of 213 nearby (0.01<z< 0.05) hard X-ray selected AGN galaxies, drawn from the 70-month catalog of Swift-BAT, with 200 new CO(2-1) line measurements obtained with the JCMT and APEX telesc opes. We find that AGN in massive galaxies tend to have more molecular gas, and higher gas fractions, than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies with no evidence of AGN feedback affecting the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% vs. 49%). The likelihood of a given galaxy hosting an AGN (L_bol>10^44 erg/s) increases by ~10-100 between a molecular gas mass of 10^8.7 Msun and 10^10.2 Msun. Higher Eddington ratio AGN galaxies tend to have higher molecular gas masses and gas fractions. Higher column density AGN galaxies (Log NH>23.4) are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy wide molecular gas. The significant average link of host galaxy molecular gas supply to SMBH growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties and the redshift evolution of star formation and SMBH growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا