ﻻ يوجد ملخص باللغة العربية
Hard X-ray ($geq 10$ keV) observations of Active Galactic Nuclei (AGN) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, has currently detected 838 AGN. We report here on the broad-band X-ray (0.3-150 keV) characteristics of these AGN, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band ($leq 10$ keV) with 70-month averaged Swift/BAT data. The non-blazar AGN of our sample are almost equally divided into unobscured ($N_{rm H}< 10^{22}rm cm^{-2}$) and obscured ($N_{rm H}geq 10^{22}rm cm^{-2}$) AGN, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGN.
We present the catalog of sources detected in 70 months of observations of the BAT hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as th
We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14--195 keV) conducted with the BAT coded mask imager on the swift satellite. The catalog contains 461 sources detected above the 4.8 sigma level wi
The nature of a substantial percentage (about one fifth) of hard X-ray sources discovered with the BAT instrument onboard the Neil Gehrels Swift Observatory (hereafter Swift) is unknown because of the lack of an identified longer-wavelength counterpa
We study the observed relation between accretion rate (in terms of L/L_Edd) and shape of the hard X-ray spectral energy distribution (namely the photon index Gamma_X) for a large sample of 228 hard X-ray selected, low-redshift active galactic nuclei
The bulk of the X-ray emission in Active Galactic Nuclei (AGN) is produced very close to the accreting supermassive black hole (SMBH), in a corona of hot electrons which up scatters optical and ultraviolet photons from the accretion flow. The cutoff