ﻻ يوجد ملخص باللغة العربية
Shocks are a crucial probe for understanding the ongoing chemistry within ices on interstellar dust grains where many complex organic molecules (COMs) are believed to be formed. However, previous work has been limited to the initial liberation into the gas phase through non-thermal desorption processes such as sputtering. Here, we present results from the adapted three-phase gas-grain chemical network code NAUTILUS, with the inclusion of additional high-temperature reactions, non-thermal desorption, collisional dust heating, and shock-physics parameters. This enhanced model is capable of reproducing many of the molecular distributions and abundance ratios seen in our prior observations of the prototypical shocked-outflow L1157. In addition, we find that, among others, NH$_2$CHO, HCOOCH$_3$, and CH$_3$CHO have significant post-shock chemistry formation routes that differ from those of many other COMs observed in shocks. Finally, a number of selected species and phenomena are studied here with respect to their usefulness as shock tracers in various astrophysical sources.
We present 1.3mm Submillimeter Array (SMA) observations at $sim$3$^{primeprime}$ resolution towards the brightest section of the intermediate/massive star forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3mm continuum peaks
We present maps of a large number of dense molecular gas tracers across the Central Molecular Zone of our Galaxy. The data were taken with the CSIRO/CASS Mopra telescope in Large Projects in the 1.3cm, 7mm, and 3mm wavelength regimes. Here, we focus
We present new CO(2-1) observations of 3 low-z (~350 Mpc) ULIRG systems (6 nuclei) observed with ALMA at high-spatial resolution (~500 pc). We detect massive cold molecular gas outflows in 5 out of 6 nuclei (0.3-5)x10^8 Msun. These outflows are spati
(Abridged) We present a molecular survey of the outflows powered by L1448-mm and IRAS 04166+2706, two sources with prominent wing and extremely high velocity (EHV) components in their CO spectra. The molecular composition of the two outflows presents
Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AG