ترغب بنشر مسار تعليمي؟ اضغط هنا

Submillimeter Array Observations of NGC 2264-C: Molecular Outflows and Driving Sources

59   0   0.0 ( 0 )
 نشر من قبل Nichol Cunningham
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 1.3mm Submillimeter Array (SMA) observations at $sim$3$^{primeprime}$ resolution towards the brightest section of the intermediate/massive star forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of twelve additional species towards this region, including CH$_3$CN, CH$_3$OH, SO, H$_2$CO, DCN, HC$_3$N, and $^{12}$CO. The SiO (5-4) emission reveals the presence of two collimated, high velocity (up to 30kms$^{-1}$ with respect to the systemic velocity) bi-polar outflows in NGC 2264-C. In addition, the outflows are traced by emission from $^{12}$CO, SO, H$_2$CO, and CH$_3$OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the RMS source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229GHz class I maser emission is detected towards this feature.



قيم البحث

اقرأ أيضاً

We present a CO(2-1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc a re generally more luminous and turbulent, some of which have luminosities >10^6 K km/s pc^2 and velocity dispersions >10 km/s. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGC 6946 has a shallower slope (index>-2) in the inner region, and a steeper slope (index<-2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.
The mass segregation of stellar clusters could be primordial rather than dynamical. Despite the abundance of studies of mass segregation for stellar clusters, those for stellar progenitors are still scarce, so the question on the origin and evolution of mass segregation is still open. Our goal is to characterize the structure of the NGC 2264 molecular cloud and compare the populations of clumps and young stellar objects (YSOs) in this region whose rich YSO population has shown evidence of sequential star formation. We separated the Herschel column density map of NGC 2264 in three subregions and compared their cloud power spectra using a multiscale segmentation technique. We identified in the whole NGC 2264 cloud a population of 256 clumps with typical sizes of ~0.1 pc and masses ranging from 0.08 Msun to 53 Msun. Although clumps have been detected all over the cloud, the central subregion of NGC 2264 concentrates most of the massive, bound clumps. The local surface density and the mass segregation ratio indeed indicate a strong degree of mass segregation for the 15 most massive clumps, with a median $Sigma_6$ three time that of the whole clumps population and $Lambda_{MSR}$ about 8. We showed that this cluster of massive clumps is forming within a high-density cloud ridge, itself formed and probably still fed by the high concentration of gas observed on larger scales in the central subregion. The time sequence obtained from the combined study of the clump and YSO populations in NGC 2264 suggests that the star formation started in the northern subregion, that it is now actively developing at the center and will soon start in the southern subregion. Taken together, the cloud structure and the clump and YSO populations in NGC 2264 argue for a dynamical scenario of star formation.
We report ALMA and SMA observations of the luminous infrared merger NGC 3256, the most luminous galaxy within z=0.01. Both of the two merger nuclei separated by 5 (0.8 kpc) on the sky have a compact concentration of molecular gas, i.e., nuclear disks with Sigma_mol > 10^3 Msun pc^-2. The one at the northern nucleus is face-on while the southern nuclear disk is almost edge-on. The northern nucleus is more massive and has molecular arcs and spiral arms around. The high-velocity molecular gas previously found in the system is resolved to two molecular outflows associated with each of the two nuclei. The molecular outflow from the northern nuclear disk is part of a starburst-driven superwind seen nearly pole on. Its maximum velocity is >750 km/s and its mass outflow rate is estimated to be > 60 Msun/yr for a conversion factor N_{H_2}/I_{CO(1-0)}=1x10^20 cm^-2/(K km/s). The outflow from the southern nucleus is a highly collimated bipolar molecular jet seen nearly edge-on. Its line-of-sight velocity increases with distance out to 300 pc from the southern nucleus. Its maximum de-projected velocity is ~2000 km/s for the estimated inclination and should exceed 1000 km/s even allowing for its uncertainty. The mass outflow rate is estimated to be >50 Msun/yr for this outflow. There are possible signs that this southern outflow has been driven by a bipolar radio jet from an AGN that became inactive very recently. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate in NGC 3256. The feedback from nuclear activities in the form of molecular outflows is therefore significant in the gas consumption budget, and hence evolution, of this luminous infrared galaxy. (abridged)
169 - Sherry C. C. Yeh 2007
We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1.5-5 reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west directio n. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1 to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1 southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.
Shocks are a crucial probe for understanding the ongoing chemistry within ices on interstellar dust grains where many complex organic molecules (COMs) are believed to be formed. However, previous work has been limited to the initial liberation into t he gas phase through non-thermal desorption processes such as sputtering. Here, we present results from the adapted three-phase gas-grain chemical network code NAUTILUS, with the inclusion of additional high-temperature reactions, non-thermal desorption, collisional dust heating, and shock-physics parameters. This enhanced model is capable of reproducing many of the molecular distributions and abundance ratios seen in our prior observations of the prototypical shocked-outflow L1157. In addition, we find that, among others, NH$_2$CHO, HCOOCH$_3$, and CH$_3$CHO have significant post-shock chemistry formation routes that differ from those of many other COMs observed in shocks. Finally, a number of selected species and phenomena are studied here with respect to their usefulness as shock tracers in various astrophysical sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا