ﻻ يوجد ملخص باللغة العربية
In this note, we show a sublinear nonergodic convergence rate for the algorithm developed in [Bai, et al. Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70, 129-170 (2018)], as well as its linear convergence under assumptions that the sub-differential of each component objective function is piecewise linear and all the constraint sets are polyhedra. These remaining convergence results are established for the stepsize parameters of dual variables belonging to a special isosceles triangle region, which aims to strengthen our understanding for convergence of the generalized symmetric ADMM.
In this paper, we develop a symmetric accelerated stochastic Alternating Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth
We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank even-order real symmetric tensors. This algorithm applies the tensor power method of Kolda-Mayo to a certain modified tensor, constructed from a matrix flat
The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagran
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of s
The Alternating Direction Method of Multipliers (ADMM) provides a natural way of solving inverse problems with multiple partial differential equations (PDE) forward models and nonsmooth regularization. ADMM allows splitting these large-scale inverse