ﻻ يوجد ملخص باللغة العربية
The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of $p$ block variables while the other has $q$ block variables, where $p ge 1$ and $q ge 1$ are two integers. The two grouped variables are updated in a {it Gauss-Seidel} scheme, while the variables within each group are updated in a {it Jacobi} scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case $O(1/t)$ ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.
An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-ADMM) scheme is developed for solving structured separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmoo
Large scale, non-convex optimization problems arising in many complex networks such as the power system call for efficient and scalable distributed optimization algorithms. Existing distributed methods are usually iterative and require synchronizatio
In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a wors
This paper presents a majorized alternating direction method of multipliers (ADMM) with indefinite proximal terms for solving linearly constrained $2$-block convex composite optimization problems with each block in the objective being the sum of a no
The paper considers the minimization of a separable convex function subject to linear ascending constraints. The problem arises as the core optimization in several resource allocation scenarios, and is a special case of an optimization of a separable