ﻻ يوجد ملخص باللغة العربية
We address the use of optical parametric oscillator (OPO) to counteract phase-noise in quantum optical communication channels, and demonstrate reduction of phase diffusion for coherent signals travelling through a suitably tuned OPO. In particular, we theoretically and experimentally show that there is a threshold value on the phase-noise, above which OPO can be exploited to squeeze phase noise. The threshold depends on the energy of the input coherent state, and on the relevant parameters of the OPO, i.e. gain and input/output and crystal loss rates.
We address a phase estimation scheme using Gaussian states in the presence of non-Gaussian phase noise. At variance with previous analysis, we analyze situations in which the noise occurs before encoding phase information. In particular, we study how
A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode is proposed. The analytical and numerical results show that the ultimate degree of spin squeezing depends on the parameter $frac{n_{th}+1/2}{Qsqrt{N}}$, wh
Non-Gaussian states, and specifically the paradigmatic Schrodinger cat state, are well-known to be very sensitive to losses. When propagating through damping channels, these states quickly loose their non-classical features and the associated negativ
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum
The ground state of the photon-matter coupled system described by the Dicke model is found to be perfectly squeezed at the quantum critical point of the superradiant phase transition (SRPT). In the presence of the counter-rotating photon-atom couplin