ﻻ يوجد ملخص باللغة العربية
A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode is proposed. The analytical and numerical results show that the ultimate degree of spin squeezing depends on the parameter $frac{n_{th}+1/2}{Qsqrt{N}}$, which is the ratio between the thermal excitation, the quality factor and square root of ensemble size. The undesired coupling between the spin ensemble and the bath can be efficiently suppressed by Bang-Bang control pulses. With high quality factor, the ultimate limit of the ideal one-axis twisting spin squeezing can be obtained for an NV ensemble in diamond.
Squeezing ensemble of spins provides a way to surpass the standard quantum limit (SQL) in quantum metrology and test the fundamental physics as well, and therefore attracts broad interest. Here we propose an experimentally accessible protocol to sque
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum
Theoretical models of spins coupled to bosons provide a simple setting for studying a broad range of important phenomena in many-body physics, from virtually mediated interactions to decoherence and thermalization. In many atomic, molecular, and opti
Berrys geometric phase naturally appears when a quantum system is driven by an external field whose parameters are slowly and cyclically changed. A variation in the coupling between the system and the external field can also give rise to a geometric
We consider a spin belonging to a many body system in a magnetically ordered phase, which initial state is a symmetry broken ground state. We assume that in this system a sudden quench of the Hamiltonian induces an evolution. We show that the long ti