ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards robust audio spoofing detection: a detailed comparison of traditional and learned features

280   0   0.0 ( 0 )
 نشر من قبل Dorien Herremans
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic speaker verification, like every other biometric system, is vulnerable to spoofing attacks. Using only a few minutes of recorded voice of a genuine client of a speaker verification system, attackers can develop a variety of spoofing attacks that might trick such systems. Detecting these attacks using the audio cues present in the recordings is an important challenge. Most existing spoofing detection systems depend on knowing the used spoofing technique. With this research, we aim at overcoming this limitation, by examining robust audio features, both traditional and those learned through an autoencoder, that are generalizable over different types of replay spoofing. Furthermore, we provide a detailed account of all the steps necessary in setting up state-of-the-art audio feature detection, pre-, and postprocessing, such that the (non-audio expert) machine learning researcher can implement such systems. Finally, we evaluate the performance of our robust replay speaker detection system with a wide variety and different combinations of both extracted and machine learned audio features on the `out in the wild ASVspoof 2017 dataset. This dataset contains a variety of new spoofing configurations. Since our focus is on examining which features will ensure robustness, we base our system on a traditional Gaussian Mixture Model-Universal Background Model. We then systematically investigate the relative contribution of each feature set. The fused models, based on both the known audio features and the machine learned features respectively, have a comparable performance with an Equal Error Rate (EER) of 12. The final best performing model, which obtains an EER of 10.8, is a hybrid model that contains both known and machine learned features, thus revealing the importance of incorporating both types of features when developing a robust spoofing prediction model.



قيم البحث

اقرأ أيضاً

State-of-the-art methods for audio generation suffer from fingerprint artifacts and repeated inconsistencies across temporal and spectral domains. Such artifacts could be well captured by the frequency domain analysis over the spectrogram. Thus, we p ropose a novel use of long-range spectro-temporal modulation feature -- 2D DCT over log-Mel spectrogram for the audio deepfake detection. We show that this feature works better than log-Mel spectrogram, CQCC, MFCC, as a suitable candidate to capture such artifacts. We employ spectrum augmentation and feature normalization to decrease overfitting and bridge the gap between training and test dataset along with this novel feature introduction. We developed a CNN-based baseline that achieved a 0.0849 t-DCF and outperformed the previously top single systems reported in the ASVspoof 2019 challenge. Finally, by combining our baseline with our proposed 2D DCT spectro-temporal feature, we decrease the t-DCF score down by 14% to 0.0737, making it a state-of-the-art system for spoofing detection. Furthermore, we evaluate our model using two external datasets, showing the proposed features generalization ability. We also provide analysis and ablation studies for our proposed feature and results.
Voice assistants, such as smart speakers, have exploded in popularity. It is currently estimated that the smart speaker adoption rate has exceeded 35% in the US adult population. Manufacturers have integrated speaker identification technology, which attempts to determine the identity of the person speaking, to provide personalized services to different members of the same family. Speaker identification can also play an important role in controlling how the smart speaker is used. For example, it is not critical to correctly identify the user when playing music. However, when reading the users email out loud, it is critical to correctly verify the speaker that making the request is the authorized user. Speaker verification systems, which authenticate the speaker identity, are therefore needed as a gatekeeper to protect against various spoofing attacks that aim to impersonate the enrolled user. This paper compares popular learnable front-ends which learn the representations of audio by joint training with downstream tasks (End-to-End). We categorize the front-ends by defining two generic architectures and then analyze the filtering stages of both types in terms of learning constraints. We propose replacing fixed filterbanks with a learnable layer that can better adapt to anti-spoofing tasks. The proposed FastAudio front-end is then tested with two popular back-ends to measure the performance on the LA track of the ASVspoof 2019 dataset. The FastAudio front-end achieves a relative improvement of 27% when compared with fixed front-ends, outperforming all other learnable front-ends on this task.
Audio signals are often represented as spectrograms and treated as 2D images. In this light, deep convolutional architectures are widely used for music audio tasks even though these two data types have very different structures. In this work, we atte mpt to open the black-box on deep convolutional models to inform future architectures for music audio tasks, and explain the excellent performance of deep convolutions that model spectrograms as 2D images. To this end, we expand recent explainability discussions in deep learning for natural image data to music audio data through systematic experiments using the deep features learned by various convolutional architectures. We demonstrate that deep convolutional features perform well across various target tasks, whether or not they are extracted from deep architectures originally trained on that task. Additionally, deep features exhibit high similarity to hand-crafted wavelet features, whether the deep features are extracted from a trained or untrained model.
Cough is a common symptom of respiratory and lung diseases. Cough detection is important to prevent, assess and control epidemic, such as COVID-19. This paper proposes a model to detect cough events from cough audio signals. The models are trained by the dataset combined ESC-50 dataset with self-recorded cough recordings. The test dataset contains inpatient cough recordings collected from inpatients of the respiratory disease department in Ruijin Hospital. We totally build 15 cough detection models based on different feature numbers selected by Random Frog, Uninformative Variable Elimination (UVE), and Variable influence on projection (VIP) algorithms respectively. The optimal model is based on 20 features selected from Mel Frequency Cepstral Coefficients (MFCC) features by UVE algorithm and classified with Support Vector Machine (SVM) linear two-class classifier. The best cough detection model realizes the accuracy, recall, precision and F1-score with 94.9%, 97.1%, 93.1% and 0.95 respectively. Its excellent performance with fewer dimensionality of the feature vector shows the potential of being applied to mobile devices, such as smartphones, thus making cough detection remote and non-contact.
An emerging trend in audio processing is capturing low-level speech representations from raw waveforms. These representations have shown promising results on a variety of tasks, such as speech recognition and speech separation. Compared to handcrafte d features, learning speech features via backpropagation provides the model greater flexibility in how it represents data for different tasks theoretically. However, results from empirical study shows that, in some tasks, such as voice spoof detection, handcrafted features are more competitive than learned features. Instead of evaluating handcrafted features and raw waveforms independently, this paper proposes an Auxiliary Rawnet model to complement handcrafted features with features learned from raw waveforms. A key benefit of the approach is that it can improve accuracy at a relatively low computational cost. The proposed Auxiliary Rawnet model is tested using the ASVspoof 2019 dataset and the results from this dataset indicate that a light-weight waveform encoder can potentially boost the performance of handcrafted-features-based encoders in exchange for a small amount of additional computational work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا