ﻻ يوجد ملخص باللغة العربية
Cough is a common symptom of respiratory and lung diseases. Cough detection is important to prevent, assess and control epidemic, such as COVID-19. This paper proposes a model to detect cough events from cough audio signals. The models are trained by the dataset combined ESC-50 dataset with self-recorded cough recordings. The test dataset contains inpatient cough recordings collected from inpatients of the respiratory disease department in Ruijin Hospital. We totally build 15 cough detection models based on different feature numbers selected by Random Frog, Uninformative Variable Elimination (UVE), and Variable influence on projection (VIP) algorithms respectively. The optimal model is based on 20 features selected from Mel Frequency Cepstral Coefficients (MFCC) features by UVE algorithm and classified with Support Vector Machine (SVM) linear two-class classifier. The best cough detection model realizes the accuracy, recall, precision and F1-score with 94.9%, 97.1%, 93.1% and 0.95 respectively. Its excellent performance with fewer dimensionality of the feature vector shows the potential of being applied to mobile devices, such as smartphones, thus making cough detection remote and non-contact.
We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The acceleration signals are captured by a smartphone firmly attached to the patients bed, using its integrated accelerometer. The a
Cough is one of the most common symptoms in all respiratory diseases. In cases like Chronic Obstructive Pulmonary Disease, Asthma, acute and chronic Bronchitis and the recent pandemic Covid-19, the early identification of cough is important to provid
We present an experimental investigation into the effectiveness of transfer learning and bottleneck feature extraction in detecting COVID-19 from audio recordings of cough, breath and speech. This type of screening is non-contact, does not require
Billions of USD are invested in new artists and songs by the music industry every year. This research provides a new strategy for assessing the hit potential of songs, which can help record companies support their investment decisions. A number of mo
Music, speech, and acoustic scene sound are often handled separately in the audio domain because of their different signal characteristics. However, as the image domain grows rapidly by versatile image classification models, it is necessary to study