ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter seeping through dynamic gauge kinetic mixing

105   0   0.0 ( 0 )
 نشر من قبل Avik Banerjee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show for the first time that the loop-driven kinetic mixing between visible and dark Abelian gauge bosons can facilitate dark matter production in the early Universe by creating a dynamic portal, which depends on the energy of the process. The required smallness of the strength of the portal interaction, suited for freeze-in, is justified by a suppression arising from the mass of a heavy vector-like fermion. The strong temperature sensitivity associated with the interaction is responsible for most of the dark matter production during the early stages of reheating.



قيم البحث

اقرأ أيضاً

258 - D. T. Binh , V. H. Binh , 2020
The existence of dark sectors, consisting of weakly-coupled particles that do not interact with the known Standard Model forces, is theoretically and phenomenologically motivated. The hidden particles are candidates for Dark Matter and can interact w ith photon through electric dipole moment (EDM) and magnetic dipole moment (MDM). We investigate the possibility a hidden sectors Dark Matter which is charged under a hidden $U(1)_X$ gauge symmetry can interact with photon at loop level. We evaluate the scattering cross section of hidden Dirac fermion with nuclei and set bounds for dipole moment. Using the results of the XENON1T experiment for direct detection of Dark Matter, we get bounds of electromagnetic dipole moment $(mu_chi)$ for mass $m_chi=100$ GeV : $ 1.93448 times 10^{-8}mu_B leq mu_chi leq 1.9496 times 10^{-8}mu_B$ and electric dipole moment $(d_chi): 3.3204 times 10^{-23}embox{.}cm leq d_chi leq 3.3464 times 10^{-23}embox{.}cm$. Using the condition of the existence of dipole moment we constraint the kinetic mixing parameter $ 3times 10^{-3} leq epsilon leq 10^{-2}$ and the mass of the hidden $U(1)_X$ gauge boson to be in the range of 5 GeV $leq m_X leq$ 9 GeV. Our results complement previous works and are within detection capability of LHC.
The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV. In addition to a standard a strophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.
We study electroweak scale Dark Matter (DM) whose interactions with baryonic matter are mediated by a heavy anomalous $Z$. We emphasize that when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop suppressed annihilat ions into the gauge bosons, rather than by p-wave or chirally suppressed annihilations into the SM fermions. Because the $Z$ is anomalous, these kinds of DM models can be realized only as effective field theories (EFTs) with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high energies. We formulate these EFTs, estimate their cutoff and properly take into account the effect of the Chern-Simons terms one obtains after the spectator fermions are integrated out. We find that, while for light DM collider and direct detection experiments usually provide the strongest bounds, the bounds at higher masses are heavily dominated by indirect detection experiments, due to strong annihilation into $W^+W^-$, $ZZ$, $Zgamma$ and possibly into $gg$ and $gammagamma$. We emphasize that these annihilation channels are generically significant because of the structure of the EFT, and therefore these models are prone to strong indirect detection constraints. Even though we focus on selected $Z$ models for illustrative purposes, our setup is completely generic and can be used for analyzing the predictions of any anomalous $Z$-mediated DM model with arbitrary charges.
We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is know n that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.
Macroscopic dark matter is almost unconstrained over a wide asteroid-like mass range, where it could scatter on baryonic matter with geometric cross section. We show that when such an object travels through a star, it produces shock waves which reach the stellar surface, leading to a distinctive transient optical, UV and X-ray emission. This signature can be searched for on a variety of stellar types and locations. In a dense globular cluster, such events occur far more often than flare backgrounds, and an existing UV telescope could probe orders of magnitude in dark matter mass in one week of dedicated observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا