ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing dark matter signals in neutrino telescopes through angular power spectrum

86   0   0.0 ( 0 )
 نشر من قبل Ariane Dekker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV. In addition to a standard astrophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.



قيم البحث

اقرأ أيضاً

We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o bservatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.
118 - Marco Chianese 2019
Recent analyses of the diffuse TeV-PeV neutrino flux highlight a tension between different Ice-Cube data samples that strongly suggests a two-component scenario rather than a single steep power-law flux. Such a tension is further strengthened once th e latest ANTARES data are also taken into account. Remarkably, both experiments show an excess in the same energy range (40-200 TeV), whose origin could intriguingly be related to dark matter. In this paper, I discuss the combined analysis of IceCube and ANTARES data, highlighting the presence of the low-energy excess. Moreover, I update the results of the angular analysis for potential dark matter signals, previously obtained with the 4-year High-Energy Starting Events data. In particular, I statistically compare the distribution of the arrival directions of 6-year IceCube events belonging to the low-energy excess with the angular distributions expected in case of different dark matter neutrino signals.
We study scenarios where loop processes give the dominant contributions to dark matter decay or annihilation despite the presence of tree level channels. We illustrate this possibility in a specific model where dark matter is part of a hidden sector that communicates with the Standard Model sector via a heavy neutrino portal. We explain the underpinning rationale for how loop processes mediated by the portal neutrinos can parametrically dominate over tree level decay channels, and demonstrate that this qualitatively changes the indirect detection signals in positrons, neutrinos, and gamma rays.
In the next decades, ultra-high-energy neutrinos in the EeV energy range will be potentially detected by next-generation neutrino telescopes. Although their primary goals are to observe cosmogenic neutrinos and to gain insight into extreme astrophysi cal environments, they can also indirectly probe the nature of dark matter. In this paper, we study the projected sensitivity of up-coming neutrino radio telescopes, such as RNO-G, GRAND and IceCube-gen2 radio array, to decaying dark matter scenarios. We investigate different dark matter decaying channels and masses, from $10^7$ to $10^{15}$ GeV. By assuming the observation of cosmogenic or newborn pulsar neutrinos, we forecast conservative constraints on the lifetime of heavy dark matter particles. We find that these limits are competitive with and highly complementary to previous multi-messenger analyses.
Dark Matter (DM) models providing possible alternative solutions to the small- scale crisis of standard cosmology are nowadays of growing interest. We consider DM interacting with light hidden fermions via well motivated fundamental operators showing the resultant matter power spectrum is suppressed on subgalactic scales within a plausible parameter region. Our basic description of the evolution of cosmological perturbations relies on a fully consistent first principles derivation of a perturbed Fokker-Planck type equation, generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation is presented for the first time in two different gauges, where the results transform into each other according to the rules of gauge transformation. Furthermore, our focus lies on a derivation of a broadly applicable and easily computable collision term showing important phenomenological differences to other existing approximations. As one of the main results and concerning the small-scale crisis, we show the equal importance of vector and scalar boson mediated interactions between DM and light fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا