Given a C$^*$-correspondence $X$, we give necessary and sufficient conditions for the tensor algebra $mathcal T_X^+$ to be hyperrigid. In the case where $X$ is coming from a topological graph we obtain a complete characterization.
In this paper we study the C*-envelope of the (non-self-adjoint) tensor algebra associated via subproduct systems to a finite irreducible stochastic matrix $P$. Firstly, we identify the boundary representations of the tensor algebra inside the Toepli
tz algebra, also known as its non-commutative Choquet boundary. As an application, we provide examples of C*-envelopes that are not *-isomorphic to either the Toeplitz algebra or the Cuntz-Pimsner algebra. This characterization required a new proof for the fact that the Cuntz-Pimsner algebra associated to $P$ is isomorphic to $C(mathbb{T}, M_d(mathbb{C}))$, filling a gap in a previous paper. We then proceed to classify the C*-envelopes of tensor algebras of stochastic matrices up to *-isomorphism and stable isomorphism, in terms of the underlying matrices. This is accomplished by determining the K-theory of these C*-algebras and by combining this information with results due to Paschke and Salinas in extension theory. This classification is applied to provide a clearer picture of the various C*-envelopes that can land between the Toeplitz and the Cuntz-Pimsner algebras.
Given two correspondences X and Y, we show that (under mild hypotheses) the Cuntz-Pimsner algebra of the tensor product of X and Y embeds as a certain subalgebra of the tensor product of the Cuntz-Pimsner algebra of X and the Cuntz=Pimsner algebra of
Y. Furthermore, this subalgebra can be described in a natural way in terms of the gauge actions on the Cuntz-Pimsner algebras. We explore implications for graph algebras, crossed products by the integers, and crossed products by completely positive maps. We also give a new proof of a result of Kaliszewski and Quigg related to coactions on correspondences.
We explore the recently introduced local-triviality dimensions by studying gauge actions on graph $C^*$-algebras, as well as the restrictions of the gauge action to finite cyclic subgroups. For $C^*$-algebras of finite acyclic graphs and finite cycle
s, we characterize the finiteness of these dimensions, and we further study the gauge actions on many examples of graph $C^*$-algebras. These include the Toeplitz algebra, Cuntz algebras, and $q$-deformed spheres.
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t
hat arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
An n-homomorphism between algebras is a linear map $phi : A to B$ such that $phi(a_1 ... a_n) = phi(a_1)... phi(a_n)$ for all elements $a_1, >..., a_n in A.$ Every homomorphism is an n-homomorphism, for all n >= 2, but the converse is false, in gener
al. Hejazian et al. [7] ask: Is every *-preserving n-homomorphism between C*-algebras continuous? We answer their question in the affirmative, but the even and odd n arguments are surprisingly disjoint. We then use these results to prove stronger ones: If n >2 is even, then $phi$ is just an ordinary *-homomorphism. If n >= 3 is odd, then $phi$ is a difference of two orthogonal *-homomorphisms. Thus, there are no nontrivial *-linear n-homomorphisms between C*-algebras.