ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Nonexistence of Nontrivial Involutive n-Homomorphisms of C*-algebras

170   0   0.0 ( 0 )
 نشر من قبل Jody Trout
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An n-homomorphism between algebras is a linear map $phi : A to B$ such that $phi(a_1 ... a_n) = phi(a_1)... phi(a_n)$ for all elements $a_1, >..., a_n in A.$ Every homomorphism is an n-homomorphism, for all n >= 2, but the converse is false, in general. Hejazian et al. [7] ask: Is every *-preserving n-homomorphism between C*-algebras continuous? We answer their question in the affirmative, but the even and odd n arguments are surprisingly disjoint. We then use these results to prove stronger ones: If n >2 is even, then $phi$ is just an ordinary *-homomorphism. If n >= 3 is odd, then $phi$ is a difference of two orthogonal *-homomorphisms. Thus, there are no nontrivial *-linear n-homomorphisms between C*-algebras.



قيم البحث

اقرأ أيضاً

Let $G$ be a locally compact group. It is not always the case that its reduced C*-algebra $C^*_r(G)$ admits a tracial state. We exhibit closely related necessary and sufficient conditions for the existence of such. We gain a complete answer when $G$ compactly generated. In particular for $G$ almost connected, or more generally when $C^*_r(G)$ is nuclear, the existence of a trace is equivalent to amenability. We exhibit two examples of classes of totally disconnected groups for which $C^*_r(G)$ does not admit a tracial state.
Given a C$^*$-correspondence $X$, we give necessary and sufficient conditions for the tensor algebra $mathcal T_X^+$ to be hyperrigid. In the case where $X$ is coming from a topological graph we obtain a complete characterization.
We explore the recently introduced local-triviality dimensions by studying gauge actions on graph $C^*$-algebras, as well as the restrictions of the gauge action to finite cyclic subgroups. For $C^*$-algebras of finite acyclic graphs and finite cycle s, we characterize the finiteness of these dimensions, and we further study the gauge actions on many examples of graph $C^*$-algebras. These include the Toeplitz algebra, Cuntz algebras, and $q$-deformed spheres.
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t hat arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
The continuity of the core inverse and the dual core inverse is studied in the setting of C*-algebras. Later, this study is specialized to the case of bounded Hilbert space operators and to complex matrices. In addition, the differentiability of thes e generalized inverses is studied in the context of C*-algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا