ﻻ يوجد ملخص باللغة العربية
We study the magnetic fields in galaxy clusters through Faraday rotation measurements crossing systems in different dynamical states. We confirm that magnetic fields are present in those systems and analyze the difference between relaxed and unrelaxed samples with respect to the dispersion between their inherent Faraday Rotation measurements. We found an increase of this RM dispersion and a higher RM overlapping frequency for unrelaxed clusters. This fact suggests that a large scale physical process is involved in the nature of unrelaxed systems and possible depolarization effects are present in the relaxed ones. We show that dynamically unrelaxed systems can enhance magnetic fields to large coherence lengths. In contrast, the results for relaxed systems suggests that small-scale dynamo can be a dominant mechanism for sustaining magnetic fields, leading to intrinsic depolarization.
Future observations with next generation radio telescopes will help us to understand the presence and the evolution of magnetic fields in galaxy clusters through the determination of the so-called Rotation Measure (RM). In this work, we applied the R
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat c
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the n
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the g
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sourc