ﻻ يوجد ملخص باللغة العربية
Future observations with next generation radio telescopes will help us to understand the presence and the evolution of magnetic fields in galaxy clusters through the determination of the so-called Rotation Measure (RM). In this work, we applied the RM-synthesis technique on synthetic SKA1-MID radio images of a pair of merging galaxy clusters, measured between 950 and 1750 MHz with a resolution of 10 arcsec and a thermal noise of 0.1$mu$Jy/beam. The results of our RM-synthesis analysis are compared to the simulations input parameters. We study two cases: one with radio haloes at the cluster centres, and another without. We found that the information obtained with the RM-synthesis is in general agreement with the input information. Some discrepancies are however present. We characterise them in this work, with the final goal of determining the potential impact of SKA1-MID on the study of cluster magnetic fields.
We study the magnetic fields in galaxy clusters through Faraday rotation measurements crossing systems in different dynamical states. We confirm that magnetic fields are present in those systems and analyze the difference between relaxed and unrelaxe
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat c
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the g
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the n
The intra-cluster and inter-galactic media (ICM, IGM) that pervade the large scale structure of the Universe are known to be magnetised at sub-micro Gauss to micro Gauss levels and to contain cosmic rays (CRs). The acceleration of CRs and their evolu