ﻻ يوجد ملخص باللغة العربية
The equation of motion in the generally covariant modified gravity (MOG) theory leads, for weak gravitational fields and non-relativistic motion, to a modification of Newtons gravitational acceleration law. In addition to the metric $g_{mu u}$, MOG has a vector field $phi_mu$ that couples with gravitational strength to all baryonic matter. The gravitational coupling strength is determined by the MOG parameter $alpha$, while parameter $mu$ is the small effective mass of $phi_mu$. The MOG acceleration law has been demonstrated to fit a wide range of galaxies, galaxy clusters and the Bullet Cluster and Train Wreck Cluster mergers. For the SPARC sample of rotationally supported spiral and irregular galaxies, McGaugh et al. [24] (MLS) have found a radial acceleration relation (RAR) that relates accelerations derived from galaxy rotation curves to Newtonian accelerations derived from galaxy mass models. Using the same SPARC galaxy data, mass models independently derived from that data, and MOG parameters $alpha$ and $mu$ that run with galaxy mass, we demonstrate that adjusting galaxy parameters within $pm 1$-sigma bounds can yield MOG predictions consistent with the given rotational velocity data. Moreover, the same adjusted parameters yield a good fit to the RAR of MLS, with the RAR parameter $a_0=(5.4pm .3)times 10^{-11},{rm m/s^2}$.
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+al
Galaxies follow a tight radial acceleration relation (RAR): the acceleration observed at every radius correlates with that expected from the distribution of baryons. We use the Markov Chain Monte Carlo method to fit the mean RAR to 175 individual gal
The modified gravity (MOG) theory is applied to the gravitational wave binary merger GW190814 to demonstrate that the modified Tolman-Oppenheimer-Volkoff equation for a neutron star can produce a mass $M=2.6 -2.7 M_odot$, allowing for the binary seco
The lensing and Einstein ring at the core of the galaxy cluster Abell 3827 are reproduced in the modified gravity theory MOG. The estimated effective lensing mass $M_L=(1+alpha)M_b=5.2times 10^{12} M_odot$ within $R=18.3$~kpc for a baryon mass $M_b=1
We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models emp