ﻻ يوجد ملخص باللغة العربية
The modified gravity (MOG) theory is applied to the gravitational wave binary merger GW190814 to demonstrate that the modified Tolman-Oppenheimer-Volkoff equation for a neutron star can produce a mass $M=2.6 -2.7 M_odot$, allowing for the binary secondary component to be identified as a heavy neutron star in the hypothesized mass gap $2.5 - 5 M_odot$.
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+al
Modified gravitational wave (GW) propagation is a generic phenomenon in modified gravity. It affects the reconstruction of the redshift of coalescing binaries from the luminosity distance measured by GW detectors, and therefore the reconstruction of
The equation of motion in the generally covariant modified gravity (MOG) theory leads, for weak gravitational fields and non-relativistic motion, to a modification of Newtons gravitational acceleration law. In addition to the metric $g_{mu u}$, MOG h
The lensing and Einstein ring at the core of the galaxy cluster Abell 3827 are reproduced in the modified gravity theory MOG. The estimated effective lensing mass $M_L=(1+alpha)M_b=5.2times 10^{12} M_odot$ within $R=18.3$~kpc for a baryon mass $M_b=1
Gravitational theories differing from General Relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a screening mechanism is needed to suppress, on small scales,