ترغب بنشر مسار تعليمي؟ اضغط هنا

KPynq: A Work-Efficient Triangle-Inequality based K-means on FPGA

74   0   0.0 ( 0 )
 نشر من قبل Yuke Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

K-means is a popular but computation-intensive algorithm for unsupervised learning. To address this issue, we present KPynq, a work-efficient triangle-inequality based K-means on FPGA for handling large-size, high-dimension datasets. KPynq leverages an algorithm-level optimization to balance the performance and computation irregularity, and a hardware architecture design to fully exploit the pipeline and parallel processing capability of various FPGAs. In the experiment, KPynq consistently outperforms the CPU-based standard K-means in terms of its speedup (up to 4.2x) and significant energy-efficiency (up to 218x).



قيم البحث

اقرأ أيضاً

In this paper, we propose a novel method to compute triangle counting on GPUs. Unlike previous formulations of graph matching, our approach is BFS-based by traversing the graph in an all-source-BFS manner and thus can be mapped onto GPUs in a massive ly parallel fashion. Our implementation uses the Gunrock programming model and we evaluate our implementation in runtime and memory consumption compared with previous state-of-the-art work. We sustain a peak traversed-edges-per-second (TEPS) rate of nearly 10 GTEPS. Our algorithm is the most scalable and parallel among all existing GPU implementations and also outperforms all existing CPU distributed implementations. This work specifically focuses on leveraging our implementation on the triangle counting problem for the Subgraph Isomorphism Graph Challenge 2019, demonstrating a geometric mean speedup over the 2018 champion of 3.84x.
Differential privacy is widely used in data analysis. State-of-the-art $k$-means clustering algorithms with differential privacy typically add an equal amount of noise to centroids for each iterative computation. In this paper, we propose a novel dif ferentially private $k$-means clustering algorithm, DP-KCCM, that significantly improves the utility of clustering by adding adaptive noise and merging clusters. Specifically, to obtain $k$ clusters with differential privacy, the algorithm first generates $n times k$ initial centroids, adds adaptive noise for each iteration to get $n times k$ clusters, and finally merges these clusters into $k$ ones. We theoretically prove the differential privacy of the proposed algorithm. Surprisingly, extensive experimental results show that: 1) cluster merging with equal amounts of noise improves the utility somewhat; 2) although adding adaptive noise only does not improve the utility, combining both cluster merging and adaptive noise further improves the utility significantly.
We consider the problem of computing the k-means centers for a large high-dimensional dataset in the context of edge-based machine learning, where data sources offload machine learning computation to nearby edge servers. k-Means computation is fundam ental to many data analytics, and the capability of computing provably accurate k-means centers by leveraging the computation power of the edge servers, at a low communication and computation cost to the data sources, will greatly improve the performance of these analytics. We propose to let the data sources send small summaries, generated by joint dimensionality reduction (DR) and cardinality reduction (CR), to support approximate k-means computation at reduced complexity and communication cost. By analyzing the complexity, the communication cost, and the approximation error of k-means algorithms based on state-of-the-art DR/CR methods, we show that: (i) it is possible to achieve a near-optimal approximation at a near-linear complexity and a constant or logarithmic communication cost, (ii) the order of applying DR and CR significantly affects the complexity and the communication cost, and (iii) combining DR/CR methods with a properly configured quantizer can further reduce the communication cost without compromising the other performance metrics. Our findings are validated through experiments based on real datasets.
Hash table is a fundamental data structure for quick search and retrieval of data. It is a key component in complex graph analytics and AI/ML applications. State-of-the-art parallel hash table implementations either make some simplifying assumptions such as supporting only a subset of hash table operations or employ optimizations that lead to performance that is highly data dependent and in the worst case can be similar to a sequential implementation. In contrast, in this work we develop a dynamic hash table that supports all the hash table queries - search, insert, delete, update, while allowing us to support p parallel queries (p>1) per clock cycle via p processing engines (PEs) in the worst case i.e. the performance is data agnostic. We achieve this by implementing novel XOR based multi-ported block memories on FPGAs. Additionally, we develop a technique to optimize the memory requirement of the hash table if the ratio of search to insert/update/delete queries is known beforehand. We implement our design on state-of-the-art FPGA devices. Our design is scalable to 16 PEs and supports throughput up to 5926 MOPS. It matches the throughput of the state-of-the-art hash table design - FASTHash, which only supports search and insert operations. Comparing with the best FPGA design that supports the same set of operations, our hash table achieves up to 12.3x speedup.
As a promising solution to boost the performance of distance-related algorithms (e.g., K-means and KNN), FPGA-based acceleration attracts lots of attention, but also comes with numerous challenges. In this work, we propose AccD, a compiler-based fram ework for accelerating distance-related algorithms on CPU-FPGA platforms. Specifically, AccD provides a Domain-specific Language to unify distance-related algorithms effectively, and an optimizing compiler to reconcile the benefits from both the algorithmic optimization on the CPU and the hardware acceleration on the FPGA. The output of AccD is a high-performance and power-efficient design that can be easily synthesized and deployed on mainstream CPU-FPGA platforms. Intensive experiments show that AccD designs achieve 31.42x speedup and 99.63x better energy efficiency on average over standard CPU-based implementations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا