ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel method to compute triangle counting on GPUs. Unlike previous formulations of graph matching, our approach is BFS-based by traversing the graph in an all-source-BFS manner and thus can be mapped onto GPUs in a massively parallel fashion. Our implementation uses the Gunrock programming model and we evaluate our implementation in runtime and memory consumption compared with previous state-of-the-art work. We sustain a peak traversed-edges-per-second (TEPS) rate of nearly 10 GTEPS. Our algorithm is the most scalable and parallel among all existing GPU implementations and also outperforms all existing CPU distributed implementations. This work specifically focuses on leveraging our implementation on the triangle counting problem for the Subgraph Isomorphism Graph Challenge 2019, demonstrating a geometric mean speedup over the 2018 champion of 3.84x.
Triangle counting is a building block for a wide range of graph applications. Traditional wisdom suggests that i) hashing is not suitable for triangle counting, ii) edge-centric triangle counting beats vertex-centric design, and iii) communication-fr
Counting k-cliques in a graph is an important problem in graph analysis with many applications. Counting k-cliques is typically done by traversing search trees starting at each vertex in the graph. An important optimization is to eliminate search tre
In this paper, we propose a GPU-efficient subgraph isomorphism algorithm using the Gunrock graph analytic framework, GSM (Gunrock Subgraph Matching), to compute graph matching on GPUs. In contrast to previous approaches on the CPU which are based on
We implement exact triangle counting in graphs on the GPU using three different methodologies: subgraph matching to a triangle pattern; programmable graph analytics, with a set-intersection approach; and a matrix formulation based on sparse matrix-ma
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: idea