ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformal invariance of TMD rapidity evolution

340   0   0.0 ( 0 )
 نشر من قبل Ian Balitsky
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss conformal properties of TMD operators and present the result of the conformal rapidity evolution of TMD operators in the Sudakov region.



قيم البحث

اقرأ أيضاً

The most general lagrangian describing spin 2 particles in flat spacetime and containing operators up to (mass) dimension 6 is carefully analyzed, determining the precise conditions for it to be invariant under linearized (transverse) diffeomorphisms , linearized Weyl rescalings, and conformal transformations.
We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observa bles. The formalism is utilized to calculate the jet broadening event shape in a systematic fashion to next to leading logarithmic order. An operator definition of the factorized cross section as well as a closed form of the next-to leading log cross section are presented. The result agrees with the data to within errors.
147 - S.M. Aybat , T.C. Rogers 2011
We give an overview of the current status of perturbative QCD factorization theorems in processes that involve transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FF). We enumerate those cases where T MD-factorization is well-established, and mention cases where it is likely to fail. We discuss recent progress in the implementation of specific TMD-factorization calculations, including the implementation of evolution. We also give examples of hard part calculations. We end by discussing future strategies for the implementation of TMD-factorization in phenomenological applications.
We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.
The theoretical description of the physics of multi-jets in hadronic collisions at high energies is based on merging methods, which combine short-timescale production of jets with long-timescale evolution of partonic showers. We point out potential i mplications of the evolution of transverse momentum dependent (TMD) distributions on the structure of multi-jet states at high energies, and in particular on the theoretical systematics associated with multi-jet merging. To analyze this, we propose a new merging methodology, and illustrate its impact by comparing our theoretical results with experimental measurements for Z-boson + jets production at the Large Hadron Collider (LHC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا