ﻻ يوجد ملخص باللغة العربية
The theoretical description of the physics of multi-jets in hadronic collisions at high energies is based on merging methods, which combine short-timescale production of jets with long-timescale evolution of partonic showers. We point out potential implications of the evolution of transverse momentum dependent (TMD) distributions on the structure of multi-jet states at high energies, and in particular on the theoretical systematics associated with multi-jet merging. To analyze this, we propose a new merging methodology, and illustrate its impact by comparing our theoretical results with experimental measurements for Z-boson + jets production at the Large Hadron Collider (LHC).
We here present an extension of the CKKW-L multi-jet merging technique to so-called sector showers as implemented in the Vincia antenna shower. The bijective nature of sector showers allows for efficient multi-jet merging at high multiplicities, as a
We give an overview of the current status of perturbative QCD factorization theorems in processes that involve transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FF). We enumerate those cases where T
In using transverse-momentum-dependent (TMD) parton densities and fragmentation functions, important non-perturbative information is at large transverse position $b_T$. This concerns both the TMD functions and their evolution. Fits to high energy dat
We discuss conformal properties of TMD operators and present the result of the conformal rapidity evolution of TMD operators in the Sudakov region.
We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.