ﻻ يوجد ملخص باللغة العربية
We identify several classes of curves $C:f=0$, for which the Hilbert vector of the Jacobian module $N(f)$ can be completely determined, namely the 3-syzygy curves, the maximal Tjurina curves and the nodal curves, having only rational irreducible components. A result due to Hartshorne, on the cohomology of some rank 2 vector bundles on $mathbb{P}^2$, is used to get a sharp lower bound for the initial degree of the Jacobian module $N(f)$, under a semistability condition.
We describe the 0-th Fitting ideal of the Jacobian module of a plane curve in terms of determinants involving the Jacobian syzygies of this curve. This leads to new characterizations of maximal Tjurina curves, that is of non free plane curves, whose
We establish a form of the Gotzmann representation of the Hilbert polynomial based on rank and generating degrees of a module, which allow for a generalization of Gotzmanns Regularity Theorem. Under an additional assumption on the generating degrees,
In a series of papers, Aluffi and Faber computed the degree of the $GL_3$ orbit closure of an arbitrary plane curve. We attempt to generalize this to the equivariant setting by studying how orbits degenerate under some natural specializations, yieldi
A real morsification of a real plane curve singularity is a real deformation given by a family of real analytic functions having only real Morse critical points with all saddles on the zero level. We prove the existence of real morsifications for rea
Let $X$ be a projective K3 surfaces. In two examples where there exists a fine moduli space $M$ of stable vector bundles on $X$, isomorphic to a Hilbert scheme of points, we prove that the universal family $mathcal{E}$ on $Xtimes M$ can be understood