ترغب بنشر مسار تعليمي؟ اضغط هنا

Morsifications of real plane curve singularities

93   0   0.0 ( 0 )
 نشر من قبل Eugenii Shustin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A real morsification of a real plane curve singularity is a real deformation given by a family of real analytic functions having only real Morse critical points with all saddles on the zero level. We prove the existence of real morsifications for real plane curve singularities having arbitrary real local branches and pairs of complex conjugate branches satisfying some conditions. This was known before only in the case of all local branches being real (ACampo, Gusein-Zade). We also discuss a relation between real morsifications and the topology of singularities, extending to arbitrary real morsifications the Balke-Kaenders theorem, which states that the ACampo--Gusein-Zade diagram associated to a morsification uniquely determines the topological type of a singularity.



قيم البحث

اقرأ أيضاً

We characterize plane curve germes non-degenerate in Kouchnirenkos sense in terms of characteristics and intersection multiplicities of branches.
In a series of papers, Aluffi and Faber computed the degree of the $GL_3$ orbit closure of an arbitrary plane curve. We attempt to generalize this to the equivariant setting by studying how orbits degenerate under some natural specializations, yieldi ng a fairly complete picture in the case of plane quartics.
We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of giv en analytic or topological singularity types, there exist a plane (irreducible) curve of degree $d$ having singular points of the given type as its only singularities. The set of all such curves is a quasi-projective variety, which we call an equisingular family (ESF). We describe, in terms of numerical invariants of the curves and their singularities, the state of the art concerning necessary and sufficient conditions for the non-emptiness and $T$-smoothness (i.e., smooth of expected dimension) of the corresponding ESF. The considered singularities can be arbitrary, but we spend special attention to plane curves with nodes and cusps, the most studied case, where still no complete answer is known in general. An important result is, however, that the necessary and the sufficient conditions show the same asymptotics for $T$-smooth equisingular families if the degree goes to infinity.
We investigate the role played by curve singularity germs in the enumeration of inflection points in families of curves acquiring singular members. Let $N geq 2$, and consider an isolated complete intersection curve singularity germ $f colon (mathbb{ C}^N,0) to (mathbb{C}^{N-1},0)$. We introduce a numerical function $m mapsto operatorname{AD}_{(2)}^m(f)$ that arises as an error term when counting $m^{mathrm{th}}$-order weight-$2$ inflection points with ramification sequence $(0, dots, 0, 2)$ in a $1$-parameter family of curves acquiring the singularity $f = 0$, and we compute $operatorname{AD}_{(2)}^m(f)$ for various $(f,m)$. Particularly, for a node defined by $f colon (x,y) mapsto xy$, we prove that $operatorname{AD}_{(2)}^m(xy) = {{m+1} choose 4},$ and we deduce as a corollary that $operatorname{AD}_{(2)}^m(f) geq (operatorname{mult}_0 Delta_f) cdot {{m+1} choose 4}$ for any $f$, where $operatorname{mult}_0 Delta_f$ is the multiplicity of the discriminant $Delta_f$ at the origin in the deformation space. Furthermore, we show that the function $m mapsto operatorname{AD}_{(2)}^m(f) -(operatorname{mult}_0 Delta_f) cdot {{m+1} choose 4}$ is an analytic invariant measuring how much the singularity counts as an inflection point. We obtain similar results for weight-$2$ inflection points with ramification sequence $(0, dots, 0, 1,1)$ and for weight-$1$ inflection points, and we apply our results to solve various related enumerative problems.
186 - Mario Kummer , Kristin Shaw 2017
We introduce the separating semigroup of a real algebraic curve of dividing type. The elements of this semigroup record the possible degrees of the covering maps obtained by restricting separating morphisms to the real part of the curve. We also intr oduce the hyperbolic semigroup which consists of elements of the separating semigroup arising from morphisms which are compositions of a linear projection with an embedding of the curve to some projective space. We completely determine both semigroups in the case of maximal curves. We also prove that any embedding of a real curve to projective space of sufficiently high degree is hyperbolic. Using these semigroups we show that the hyperbolicity locus of an embedded curve is in general not connected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا