ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and mechanical properties of amorphous Mg-Si-O-N thin films deposited by reactive magnetron sputtering

134   0   0.0 ( 0 )
 نشر من قبل Per Eklund
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, amorphous thin films in Mg-Si-O-N system were prepared in order to investigate the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N2 and O2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films.



قيم البحث

اقرأ أيضاً

115 - Qixun Guo , Yu Wu , Longxiang Xu 2019
Three-dimensional (3D) topological insulators (TIs) are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure. Rapid, low-cost preparation of large-area TI th in films compatible with conventional semiconductor technology is key to the practical applications of TIs. Here, we show that wafer-sized Bi2Te3 family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO2/Si substrates by magnetron cosputtering. The SiO2/Si substrates enable us to electrically tune (Bi1-xSbx)2Te3 and Cr-doped (Bi1-xSbx)2Te3 TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states, such as the quantum anomalous Hall effect (QAHE). This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.
We report the optical, electrical, and structural properties of Si doped $beta$-Ga$_2$O$_3$ films grown on (010)-oriented $beta$-Ga$_2$O$_3$ substrate via HVPE. Our results show that, despite growth rates that are more than one order of magnitude fas ter than MOCVD, films with mobility values of up to 95 cm$^2$V$^{-1}$s$^{-1}$ at a carrier concentration of 1.3$times$10$^{17}$ cm$^{-3}$ can be achieved using this technique, with all Si-doped samples showing n-type behavior with carrier concentrations in the range of 10$^{17}$ to 10$^{19}$ cm$^{-3}$. All samples showed similar room temperature photoluminescence, with only the samples with the lowest carrier concentration showing the presence of a blue luminescence, and the Raman spectra exhibiting only phonon modes that belong to $beta$-Ga$_2$O$_3$, indicating that the Ga$_2$O$_3$ films are phase pure and of high crystal quality. We further evaluated the epitaxial quality of the films by carrying out grazing incidence X-ray scattering measurements, which allowed us to discriminate the bulk and film contributions. Finally, MOS capacitors were fabricated using ALD HfO$_2$ to perform C-V measurements. The carrier concentration and dielectric values extracted from the C-V characteristics are in good agreement with Hall probe measurements. These results indicate that HVPE has a strong potential to yield device-quality $beta$-Ga$_2$O$_3$ films that can be utilized to develop vertical devices for high-power electronics applications.
In this work, we studied phase formation, structural and magnetic properties of iron-nitride (Fe-N) thin films deposited using high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (dc-MS). The nitrogen partial pres sure during deposition was systematically varied both in HiPIMS and dc-MS. Resulting Fe-N films were characterized for their microstructure, magnetic properties and nitrogen concentration. We found that HiPIMS deposited Fe-N films show a globular nanocrystalline microstructure and improved soft magnetic properties. In addition, it was found that the nitrogen reactivity impedes in HiPIMS as compared to dc-MS. Obtained results can be understood in terms of distinct plasma properties of HiPIMS.
310 - Valerie Brien 2020
Nanocrystalline n-AlN:Er thin films were deposited on (001) Silicon substrates by r. f. magnetron sputtering at room temperature to study the correlation between 1.54 $mu$m IR photoluminescence (PL) intensity, AlN crystalline structure and Er concent ration rate. This study first presents how Energy-Dispersive Spectroscopy of X-rays (EDSX) Er Cliff Lorimer sensitivity factor alpha = 5 is obtained by combining EDSX and electron probe micro analysis (EPMA) results on reference samples. It secondly presents the relative PL intensities of nanocrystallized samples prepared with identical sputtering parameters as a function of the Er concentration. The structure of crystallites in AlN films is observed by transmission electron microscopy.
In the prospect of understanding the photoluminescence mechanisms of AlN films doped with erbium and targeting photonic applications we have synthesized non doped and Er-doped AlN films with different crystallized nanostructures by using PVD magnetro n sputtering. Their crystalline morphology and their visible photoluminescence properties were precisely measured.Due to the weak cross-section absorption of rare earths like erbium, it is necessary to obtain an efficient energy transfer mechanism between the host matrix and the rare earth to obtain high luminescence efficiency. Our strategy is then to elaborate some nanostructures that could introduce additional intermediate electronic levels within the gap thanks to the presence of structural defects (point defects, grain boundaries{ldots}) and could lead to energy transfer from the AlN matrix to the rare earth.Doped and non-doped AlN films were prepared by radio frequency magnetron sputtering by using different experimental conditions that will be detailed. It will notably be shown how a negative polarization of samples during deposition allows obtaining crystalline morphologies ranging from the classical columnar structure to a highly disordered polycrystalline structure with grains of several nanometers (nearly amorphous). The nanostructures of the films could be categorized in three types: 1) type 1 was nanocolumnar (width of column ~ 15 nm), 2) type 2 was made of short columns (width of column ~ 10 nm) and 3) the last type was made of equiaxed nanocrystallites (size of grains ~3-4 nm).High-resolution photoluminescence spectroscopy was performed to characterize their optical behaviour. The samples were excited by the laser wavelengths at 458, 488 or 514 nm. A broad photoluminescence band was observed centred around 520 nm in columnar samples. In the same energy range, the highly resolved spectra also showed several sharp emission peaks. This fine structure could be attributed to erbium transitions. This fine structure tended to disappear going from type 1 to type 3 samples. Indeed, the relative intensity of the peaks decreased and their full width at half maximum increased. This change could be related to the density of defects that increased when the size of the grains decreased. The photoluminescence properties of the films in the visible range will be discussed in relation with their structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا