ﻻ يوجد ملخص باللغة العربية
Baker and Wang define the so-called Bernardi action of the sandpile group of a ribbon graph on the set of its spanning trees. This potentially depends on a fixed vertex of the graph but it is independent of the base vertex if and only if the ribbon structure is planar, moreover, in this case the Bernardi action is compatible with planar duality. Earlier, Chan, Church and Grochow and Chan, Glass, Macauley, Perkinson, Werner and Yang proved analogous results about the rotor-routing action. Baker and Wang moreover showed that the Bernardi and rotor-routing actions coincide for plane graphs. We clarify this still confounding picture by giving a canonical definition for the planar Bernardi/rotor-routing action, and also a canonical isomorphism between sandpile groups of planar dual graphs. Our canonical definition implies the compatibility with planar duality via an extremely short argument. We also show hidden symmetries of the problem by proving our results in the slightly more general setting of balanced plane digraphs. Any balanced plane digraph gives rise to a trinity, i.e., a triangulation of the sphere with a three-coloring of the $0$-simplices. Our most important tool is a group associated to trinities, introduced by Cavenagh and Wanless, and a result of a subset of the authors characterizing the Bernardi bijection in terms of a dissection of a root polytope.
Let $C_t$ be a cycle of length $t$, and let $P_1,ldots,P_t$ be $t$ polygon chains. A polygon flower $F=(C_t; P_1,ldots,P_t)$ is a graph obtained by identifying the $i$th edge of $C_t$ with an edge $e_i$ that belongs to an end-polygon of $P_i$ for $i=
The majority of graphs whose sandpile groups are known are either regular or simple. We give an explicit formula for a family of non-regular multi-graphs called thick cycles. A thick cycle graph is a cycle where multi-edges are permitted. Its sandpil
Let $G$ be a ribbon graph. Matthew Baker and Yao Wang proved that the rotor-routing torsor and the Bernardi torsor for $G$, which are two torsor structures on the set of spanning trees for the Picard group of $G$, coincide when $G$ is planar. We prov
Let $C_{k_1}, ldots, C_{k_n}$ be cycles with $k_igeq 2$ vertices ($1le ile n$). By attaching these $n$ cycles together in a linear order, we obtain a graph called a polygon chain. By attaching these $n$ cycles together in a cyclic order, we obtain a
In this article, we consider involutions, called togglings, on the set of independent sets of the Dynkin diagram of type A, or a path graph. We are interested in the action of the subgroup of the symmetric group of the set of independent sets generat