ﻻ يوجد ملخص باللغة العربية
Let $C_{k_1}, ldots, C_{k_n}$ be cycles with $k_igeq 2$ vertices ($1le ile n$). By attaching these $n$ cycles together in a linear order, we obtain a graph called a polygon chain. By attaching these $n$ cycles together in a cyclic order, we obtain a graph, which is called a polygon ring if it can be embedded on the plane; and called a twisted polygon ring if it can be embedded on the M{o}bius band. It is known that the sandpile group of a polygon chain is always cyclic. Furthermore, there exist edge generators. In this paper, we not only show that the sandpile group of any (twisted) polygon ring can be generated by at most three edges, but also give an explicit relation matrix among these edges. So we obtain a uniform method to compute the sandpile group of arbitrary (twisted) polygon rings, as well as the number of spanning trees of (twisted) polygon rings. As an application, we compute the sandpile groups of several infinite families of polygon rings, including some that have been done before by ad hoc methods, such as, generalized wheel graphs, ladders and M{o}bius ladders.
Let $C_t$ be a cycle of length $t$, and let $P_1,ldots,P_t$ be $t$ polygon chains. A polygon flower $F=(C_t; P_1,ldots,P_t)$ is a graph obtained by identifying the $i$th edge of $C_t$ with an edge $e_i$ that belongs to an end-polygon of $P_i$ for $i=
We reformulate several known results about continued fractions in combinatorial terms. Among them the theorem of Conway and Coxeter and that of Series, both relating continued fractions and triangulations. More general polygon dissections appear when
Curve pseudo-visibility graphs generalize polygon and pseudo-polygon visibility graphs and form a hereditary class of graphs. We prove that every curve pseudo-visibility graph with clique number $omega$ has chromatic number at most $3cdot 4^{omega-1}
We study a $2 times 2$ matrix equation arising naturally in the theory of Coxeter frieze patterns. It is formulated in terms of the generators of the group $mathrm{PSL}(2,mathbb{Z})$ and is closely related to continued fractions. It appears in a numb
During the past three decades fundamental progress has been made on constructing large torsion-free subgroups (i.e. subgroups of finite index) of the unit group $U (Z G)$ of the integral group ring $Z G$ of a finite group $G$. These constructions rel