ﻻ يوجد ملخص باللغة العربية
A recent proposal for testing Lorentz symmetry violation (LSV) presents a formulation where the effect of violation is described as a local interaction [R. Shaniv, et al, Phys. Rev. Lett. 120, 103202 (2018)]. An entangled ion pair in a decoherence free subspace (DFS) is shown to double the signal to noise ratio (SNR) of one ion, while (even)-N/2 such DFS pairs in a collective entangled state improve SNR by N times, provided the state parity or the even/odd numbers of ions can be measured. It remains to find out, however, how such fiducial entangled states can be prepared at nonexponentially small success rates. This work suggests two types of many particle entangled states for testing LSV: the maximally entangled NOON state, which can achieve Heisenberg limited precision; and the balanced spin-1 Dicke state, which is readily available in deterministic fashion. We show that the latter also lives in a DFS and is immune to stray magnetic fields. It can achieve classical precision limit or the standard quantum limit (SQL) based on collective population measurement without individual atom resolution. Given the high interests in LSV and in entanglement assisted quantum metrology, our observation offers additional incentives for pursuing practical applications of many atom entangled states.
Lorentz symmetry violation (LV) was recently proposed to be testable with a new method, in which the effect of the violation is described as a certain local interaction [R. Shaniv, et al, PRL 120, 103202 (2018)]. We revisit this LV effect in the pape
We show how a mass mixing matrix can be generated dynamically, for two massless fermion flavours coupled to a Lorentz invariance violating (LIV) gauge field. The LIV features play the role of a regulator for the gap equations, and the non-analytic de
All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the Standard Model of physics by requiring all particles and fields to be invariant under Lorentz transformations. The
The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to inv
We consider a background of the violation of the Lorentz symmetry determined by the tensor $left( K_{F}right)_{mu ualphabeta}$ which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Cou