ﻻ يوجد ملخص باللغة العربية
We consider a background of the violation of the Lorentz symmetry determined by the tensor $left( K_{F}right)_{mu ualphabeta}$ which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Coulomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.
Based on models of confinement of quarks, we analyse a relativistic scalar particle subject to a scalar potential proportional to the inverse of the radial distance and under the effects of the violation of the Lorentz symmetry. We show that the effe
The relativistic bound-state energy spectrum and the wavefunctions for the Coulomb potential are studied for de Sitter and anti-de Sitter spaces in the context of the extended uncertainty principle. Klein-Gordon and Dirac equations are solved analyti
The quintessence-like potential of vacuum energy can meet the requirement from both quantum gravity and the accelerating expansion of the universe. The anti-de Sitter vacuum in string theory has to be lifted to the meta-stable de Sitter vacuum with p
A recent proposal for testing Lorentz symmetry violation (LSV) presents a formulation where the effect of violation is described as a local interaction [R. Shaniv, et al, Phys. Rev. Lett. 120, 103202 (2018)]. An entangled ion pair in a decoherence fr
In this paper are presented the effects of Lorentz violation in superconductivity. Constructing a Lorentz-Violating Ginzburg-Landau theory of superconductivity we discuss the influence of the Lorentz-Violating tensor $hat{k}_a^i$ in the Londons depth