ﻻ يوجد ملخص باللغة العربية
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-defined graph and fix it through the entire network, which can loss implicit joint correlations. Besides, the mainstream spectral GCN is approximated by one-order hop, thus higher-order connections are not well involved. Therefore, huge efforts are required to explore a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for skeleton-based action recognition. Specifically, we enrich the search space by providing multiple dynamic graph modules after fully exploring the spatial-temporal correlations between nodes. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a sampling- and memory-efficient evolution strategy is proposed to search an optimal architecture for this task. The resulted architecture proves the effectiveness of the higher-order approximation and the dynamic graph modeling mechanism with temporal interactions, which is barely discussed before. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scaled datasets and the results show that our model gets the state-of-the-art results.
Action recognition with skeleton data has recently attracted much attention in computer vision. Previous studies are mostly based on fixed skeleton graphs, only capturing local physical dependencies among joints, which may miss implicit joint correla
The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for
Graph convolutional networks (GCNs) achieve promising performance for skeleton-based action recognition. However, in most GCN-based methods, the spatial-temporal graph convolution is strictly restricted by the graph topology while only captures the s
3D skeleton-based action recognition and motion prediction are two essential problems of human activity understanding. In many previous works: 1) they studied two tasks separately, neglecting internal correlations; 2) they did not capture sufficient
Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph da