ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy function from toric geometry

92   0   0.0 ( 0 )
 نشر من قبل Antonio Amariti
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been claimed that a Cardy-like limit of the superconformal index of 4d $mathcal{N}=4$ SYM accounts for the entropy function, whose Legendre transform corresponds to the entropy of the holographic dual AdS$_5$ rotating black hole. Here we study this Cardy-like limit for $mathcal{N}=1$ toric quiver gauge theories, observing that the corresponding entropy function can be interpreted in terms of the toric data. Furthermore, for some families of models, we compute the Legendre transform of the entropy function, comparing with similar results recently discussed in the literature.



قيم البحث

اقرأ أيضاً

In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined finite objects called on-shell diagrams drawn on disks. Furthermore it has been shown that the physical information of on-shell diagrams is encoded in the geometry of auxiliary algebraic varieties called the totally non negative Grassmannians. In this new formulation the infinite dimensional symmetry of the theory is manifest and many results, that are quite tricky to obtain in terms of the standard Lagrangian formulation of the theory, are instead manifest. In this paper, elaborating on previous results, we provide another picture of the scattering amplitudes in terms of toric geometry. In particular we describe in detail the toric varieties associated to an on-shell diagram, how the singularities of the amplitudes are encoded in some subspaces of the toric variety, and how this picture maps onto the Grassmannian description. Eventually we discuss the action of cluster transformations on the toric varieties. The hope is to provide an alternative description of the scattering amplitudes that could contribute in the developing of this very interesting field of research.
We show using the entropy function formalism developed by Sen cite{Sen:2005wa} that the boundary term which arises from the Einstein-Hilbert action is sufficient to yield the Bekenstein-Hawking entropy of a static extremal black hole which is asympto tically flat. However, for asymptotically $AdS$ black holes, the bulk term also plays an important role due to the presence of the cosmological constant. Further, we show that for extremal rotating black holes, both the boundary and the bulk terms contribute non-vanishing pieces to the entropy.
We consider $d=3$, $mathcal{N}=2$ gauge theories arising on membranes sitting at the apex of an arbitrary toric Calabi-Yau 4-fold cone singularity that are then further compactified on a Riemann surface, $Sigma_g$, with a topological twist that prese rves two supersymmetries. If the theories flow to a superconformal quantum mechanics in the infrared, then they have a $D=11$ supergravity dual of the form AdS$_2times Y_9$, with electric four-form flux and where $Y_9$ is topologically a fibration of a Sasakian $Y_7$ over $Sigma_g$. These $D=11$ solutions are also expected to arise as the near horizon limit of magnetically charged black holes in AdS$_4times Y_7$, with a Sasaki-Einstein metric on $Y_7$. We show that an off-shell entropy function for the dual AdS$_2$ solutions may be computed using the toric data and Kahler class parameters of the Calabi-Yau 4-fold, that are encoded in a master volume, as well as a set of integers that determine the fibration of $Y_7$ over $Sigma_g$ and a Kahler class parameter for $Sigma_g$. We also discuss the class of supersymmetric AdS$_3times Y_7$ solutions of type IIB supergravity with five-form flux only in the case that $Y_7$ is toric, and show how the off-shell central charge of the dual field theory can be obtained from the toric data. We illustrate with several examples, finding agreement both with explicit supergravity solutions as well as with some known field theory results concerning ${cal I}$-extremization.
Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we expl oit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S^5 universes. In this sector we devise a coarse-grained metric operator whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.
We develop an efficient method to compute the torus partition function of the six-vertex model exactly for finite lattice size. The method is based on the algebro-geometric approach to the resolution of Bethe ansatz equations initiated in a previous work, and on further ingredients introduced in the present paper. The latter include rational $Q$-system, primary decomposition, algebraic extension and Galois theory. Using this approach, we probe new structures in the solution space of the Bethe ansatz equations which enable us to boost the efficiency of the computation. As an application, we study the zeros of the partition function in a partial thermodynamic limit of $M times N$ tori with $N gg M$. We observe that for $N to infty$ the zeros accumulate on some curves and give a numerical method to generate the curves of accumulation points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا