ﻻ يوجد ملخص باللغة العربية
A second-order topological insulator (SOTI) in $d$ spatial dimensions features topologically protected gapless states at its $(d-2)$-dimensional boundary at the intersection of two crystal faces, but is gapped otherwise. As a novel topological state, it has been attracting great interest, but it remains a challenge to identify a realistic SOTI material in two dimensions (2D). Here, based on combined first-principles calculations and theoretical analysis, we reveal the already experimentally synthesized 2D material graphdiyne as the first realistic example of a 2D SOTI, with topologically protected 0D corner states. The role of crystalline symmetry, the robustness against symmetry-breaking, and the possible experimental characterization are discussed. Our results uncover a hidden topological character of graphdiyne and promote it as a concrete material platform for exploring the intriguing physics of higher-order topological phases.
Second-order topological insulators (SOTIs) are the topological phases of matter in d dimensions that manifest (d-2)-dimensional localized modes at the intersection of the edges. We show that SOTIs can be designed via stacked Chern insulators with op
We study the topological phase in dipolar-coupled two-dimensional breathing square lattice of magnetic vortices. By evaluating the quantized Chern number and $mathbb{Z}_{4}$ Berry phase, we obtain the phase diagram and identify that the second-order
Recently, a new class of second-order topological insulators (SOTIs) characterized by an electronic dipole has been theoretically introduced and proposed to host topological corner states. As a novel topological state, it has been attracting great in
We propose two mechanisms to realize the second order topological insulator (SOTI) state in spinless hexagonal lattices, viz., chemical modification and anti-Kekule/Kekule distortion of hexagonal lattice. Correspondingly, we construct two models and
Recent acoustic and electrical-circuit experiments have reported the third-order (or octupole) topological insulating phase, while its counterpart in classical magnetic systems is yet to be realized. Here we explore the collective dynamics of magneti