ﻻ يوجد ملخص باللغة العربية
Second-order topological insulators (SOTIs) are the topological phases of matter in d dimensions that manifest (d-2)-dimensional localized modes at the intersection of the edges. We show that SOTIs can be designed via stacked Chern insulators with opposite chiralities connected by interlayer coupling. To characterize the bulk-corner correspondence, we establish a Jacobian-transformed nested Wilson loop method and an edge theory that are applicable to a wider class of higher-order topological systems. The corresponding topological invariant admits a filling anomaly of the corner modes with fractional charges. The system manifests a fragile topological phase characterized by the absence of a Wannier gap in the Wilson loop spectrum. Furthermore, we argue that the proposed approach can be generalized to multilayers. Our work offers perspectives for exploring and understanding higher-order topological phenomena.
A second-order topological insulator (SOTI) in $d$ spatial dimensions features topologically protected gapless states at its $(d-2)$-dimensional boundary at the intersection of two crystal faces, but is gapped otherwise. As a novel topological state,
We study the topological phase in dipolar-coupled two-dimensional breathing square lattice of magnetic vortices. By evaluating the quantized Chern number and $mathbb{Z}_{4}$ Berry phase, we obtain the phase diagram and identify that the second-order
We propose two mechanisms to realize the second order topological insulator (SOTI) state in spinless hexagonal lattices, viz., chemical modification and anti-Kekule/Kekule distortion of hexagonal lattice. Correspondingly, we construct two models and
Recently, a new class of second-order topological insulators (SOTIs) characterized by an electronic dipole has been theoretically introduced and proposed to host topological corner states. As a novel topological state, it has been attracting great in
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related