ﻻ يوجد ملخص باللغة العربية
We employ the framework of the Koopman operator and dynamic mode decomposition to devise a computationally cheap and easily implementable method to detect transient dynamics and regime changes in time series. We argue that typically transient dynamics experiences the full state space dimension with subsequent fast relaxation towards the attractor. In equilibrium, on the other hand, the dynamics evolves on a slower time scale on a lower dimensional attractor. The reconstruction error of a dynamic mode decomposition is used to monitor the inability of the time series to resolve the fast relaxation towards the attractor as well as the effective dimension of the dynamics. We illustrate our method by detecting transient dynamics in the Kuramoto-Sivashinsky equation. We further apply our method to atmospheric reanalysis data; our diagnostics detects the transition from a predominantly negative North Atlantic Oscillation (NAO) to a predominantly positive NAO around 1970, as well as the recently found regime change in the Southern Hemisphere atmospheric circulation around 1970.
Koopman mode analysis has provided a framework for analysis of nonlinear phenomena across a plethora of fields. Its numerical implementation via Dynamic Mode Decomposition (DMD) has been extensively deployed and improved upon over the last decade. We
The Dynamic-Mode Decomposition (DMD) is a well established data-driven method of finding temporally evolving linear-mode decompositions of nonlinear time series. Traditionally, this method presumes that all relevant dimensions are sampled through mea
Many natural systems undergo critical transitions, i.e. sudden shifts from one dynamical regime to another. In the climate system, the atmospheric boundary layer can experience sudden transitions between fully turbulent states and quiescent, quasi-la
Research in modern data-driven dynamical systems is typically focused on the three key challenges of high dimensionality, unknown dynamics, and nonlinearity. The dynamic mode decomposition (DMD) has emerged as a cornerstone for modeling high-dimensio
During the last decades there is a continuing international endeavor in developing realistic space weather prediction tools aiming to forecast the conditions on the Sun and in the interplanetary environment. These efforts have led to the need of deve