ﻻ يوجد ملخص باللغة العربية
This paper proposes the progressive attention memory network (PAMN) for movie story question answering (QA). Movie story QA is challenging compared to VQA in two aspects: (1) pinpointing the temporal parts relevant to answer the question is difficult as the movies are typically longer than an hour, (2) it has both video and subtitle where different questions require different modality to infer the answer. To overcome these challenges, PAMN involves three main features: (1) progressive attention mechanism that utilizes cues from both question and answer to progressively prune out irrelevant temporal parts in memory, (2) dynamic modality fusion that adaptively determines the contribution of each modality for answering the current question, and (3) belief correction answering scheme that successively corrects the prediction score on each candidate answer. Experiments on publicly available benchmark datasets, MovieQA and TVQA, demonstrate that each feature contributes to our movie story QA architecture, PAMN, and improves performance to achieve the state-of-the-art result. Qualitative analysis by visualizing the inference mechanism of PAMN is also provided.
In this paper, we propose a novel end-to-end trainable Video Question Answering (VideoQA) framework with three major components: 1) a new heterogeneous memory which can effectively learn global context information from appearance and motion features;
This paper considers a network referred to as Modality Shifting Attention Network (MSAN) for Multimodal Video Question Answering (MVQA) task. MSAN decomposes the task into two sub-tasks: (1) localization of temporal moment relevant to the question, a
The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual
While sophisticated Visual Question Answering models have achieved remarkable success, they tend to answer questions only according to superficial correlations between question and answer. Several recent approaches have been developed to address this
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurr