ﻻ يوجد ملخص باللغة العربية
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurrent networks to this problem, but have failed to model spatial inference. To remedy this, we propose a model we call the Spatial Memory Network and apply it to the VQA task. Memory networks are recurrent neural networks with an explicit attention mechanism that selects certain parts of the information stored in memory. Our Spatial Memory Network stores neuron activations from different spatial regions of the image in its memory, and uses the question to choose relevant regions for computing the answer, a process of which constitutes a single hop in the network. We propose a novel spatial attention architecture that aligns words with image patches in the first hop, and obtain improved results by adding a second attention hop which considers the whole question to choose visual evidence based on the results of the first hop. To better understand the inference process learned by the network, we design synthetic questions that specifically require spatial inference and visualize the attention weights. We evaluate our model on two published visual question answering datasets, DAQUAR [1] and VQA [2], and obtain improved results compared to a strong deep baseline model (iBOWIMG) which concatenates image and question features to predict the answer [3].
This paper studies the task of Visual Question Answering (VQA), which is topical in Multimedia community recently. Particularly, we explore two critical research problems existed in VQA: (1) efficiently fusing the visual and textual modalities; (2) e
The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual
In many real-world scenarios where extrinsic rewards to the agent are extremely sparse, curiosity has emerged as a useful concept providing intrinsic rewards that enable the agent to explore its environment and acquire information to achieve its goal
Visual Question Answering (VQA) has become one of the key benchmarks of visual recognition progress. Multiple VQA extensions have been explored to better simulate real-world settings: different question formulations, changing training and test distri
Deep neural networks have shown striking progress and obtained state-of-the-art results in many AI research fields in the recent years. However, it is often unsatisfying to not know why they predict what they do. In this paper, we address the problem