ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced relativistic-electron beam collimation using two consecutive laser pulses

83   0   0.0 ( 0 )
 نشر من قبل Luca Volpe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The double laser pulse approach to relativistic electron beam (REB) collimation has been investigated at the LULI-ELFIE facility. In this scheme, the magnetic field generated by the first laser-driven REB is used to guide a second delayed REB. We show how electron beam collimation can be controlled by properly adjusting laser parameters. By changing the ratio of focus size and the delay time between the two pulses we found a maximum of electron beam collimation clearly dependent on the focal spot size ratio of the two laser pulses and related to the magnetic field dynamics. Cu-K alpha and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy (< 100 keV) and high energy (> MeV) components of the REB.



قيم البحث

اقرأ أيضاً

This paper describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two co-linear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field which guides t he higher current fast electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy and intrinsic pre-pulse are examined. Thermal and K{alpha} imaging showed reduced emission size, increased peak emission and increased total emission at delays of 4 - 6 ps, an intensity ratio of 10 : 1 (second:first) and a total energy of 186 J. In comparison to a single, high contrast shot, the inferred fast electron divergence is reduced by 2.7 times, while the fast electron current density is increased by a factor of 1.8. The enhancements are reproduced with modelling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast ignition inertial fusion.
The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the el ectric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.
We propose a novel scheme for frequency-tunable sub-cycle electromagnetic pulse generation. To this end a pump electron beam is injected into an electromagnetic seed pulse as the latter is reflected by a mirror. The electron beam is shown to be able to amplify the field of the seed pulse while upshifting its central frequency and reducing its number of cycles. We demonstrate the amplification by means of 1D and 2D particle-in-cell simulations. In order to explain and optimize the process, a model based on fluid theory is proposed. We estimate that using currently available electron beams and terahertz pulse sources, our scheme is able to produce mJ-strong mid-infrared sub-cycle pulses.
237 - X. L. Xu 2014
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity $I$, lasers with longer/shorter wavelength $lambda$ have larger/smaller ponderomotive potential ($propto I lambda^2$). The two color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g. a $10 micrometer$ CO$_2$ laser) due to its very large ponderomotive potential. On the other hand, short wavelength laser can produce electrons with very small residual momenta ($p_perpsim a_0sim sqrt{I}lambda$) inside the wake, leading to electron beams with very small normalized emittances (tens of $ anometer$). Using particle-in-cell simulations we show that a $sim10 femtosecond$ electron beam with $sim4 picocoulomb$ of charge and a normalized emittance of $sim 50 anometer$ can be generated by combining a 10 $micrometer $ driving laser with a 400 $ anometer$ injection laser, which is an improvement of more than one order of magnitude compared to the typical results obtained when a single wavelength laser used for both the wake formation and ionization injection.
Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا