ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Collimation Control of Laser-Generated Ion Beam

236   0   0.0 ( 0 )
 نشر من قبل Shigeo Kawata
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.



قيم البحث

اقرأ أيضاً

82 - S. Malko , X.Vaisseau , F.Perez 2019
The double laser pulse approach to relativistic electron beam (REB) collimation has been investigated at the LULI-ELFIE facility. In this scheme, the magnetic field generated by the first laser-driven REB is used to guide a second delayed REB. We sho w how electron beam collimation can be controlled by properly adjusting laser parameters. By changing the ratio of focus size and the delay time between the two pulses we found a maximum of electron beam collimation clearly dependent on the focal spot size ratio of the two laser pulses and related to the magnetic field dynamics. Cu-K alpha and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy (< 100 keV) and high energy (> MeV) components of the REB.
Long-distance collimation of fast electron beams generated by laser-metallic-wire targets has been observed in recent experiments, while the mechanism behind this phenomenon remains unclear. In this work, we investigate in detail the laser-wire inter action processes with a simplified model and Classical Trajectory Monte Carlo simulations, and demonstrate the significance of the self magnetic fields of the beams in the long-distance collimation. Good agreements of simulated image plate patterns with various experiments and detailed analysis of electron trajectories show that the self magnetic fields provide restoring force that is critical for the beam collimation. By studying the wire-length dependence of beam divergence in certain experiments, we clarify that the role of the metallic wire is to balance the space-charge effect and thus maintain the collimation.
Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported on in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For PW-class lasers, this acceleration regime provides favorable scaling of maximum ion energy with laser power for optimized interaction parameters. The mega Tesla-level magnetic fields generated by the laser-driven co-axial plasma structure in the target are prerequisite for accelerating protons to the energy of several hundred MeV.
The collimation efficiency for Pb ion beams in the LHC is predicted to be lower than requirements. Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not inter cepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation.
A non-equilibrium model for laser-induced plasmas is used to describe how nano-second temporal mode-beating affects plasma kernel formation and growth in quiescent air. The chemically reactive Navier-Stokes equations describe the hydrodynamics, and n on-equilibrium effects are modeled based on a two-temperature model. Inverse Bremsstrahlung and multiphoton ionization are self-consistently taken into account via a coupled solution of the equations governing plasma dynamics and beam propagation and attenuation (i.e., Radiative Transfer Equation). This strategy, despite the additional challenges it may bring, allows to minimize empiricism and enables for more accurate simulations since it does not require an artificial plasma seed to trigger breakdown. The benefits of this methodology are demonstrated by the good agreement between the predicted and the experimental plasma boundary evolution and absorbed energy. The same goes for the periodic plasma kernel structures which, as suggested by experiments and confirmed by the simulations discussed here, are linked to the modulating frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا