ﻻ يوجد ملخص باللغة العربية
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scale, chaotic flows. To study this collective phenomenon, we use large-scale (up to $N=3times 10^6$) particle-resolved lattice Boltzmann simulations of model microswimmers described by extended stresslets. Such system sizes enable us to obtain quantitative information about both the transition to active turbulence and characteristic features of the turbulent state itself. In the dilute limit, we test analytical predictions for a number of static and dynamic properties against our simulation results. For higher swimmer densities, where swimmer-swimmer interactions become significant, we numerically show that the length- and timescales of the turbulent flows increase steeply near the predicted finite-system transition density.
Active liquid crystals or active gels are soft materials which can be physically realised e.g. by preparing a solution of cytoskeletal filaments interacting with molecular motors. We study the hydrodynamics of an active liquid crystal in a slab-like
The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a 2D mode
Active matter describes materials whose constituents are driven out of equilibrium by continuous energy consumption, for instance from ATP. Due to the orientable character of the constituents, active suspensions can attain liquid crystalline order an
The shear-induced reversible self-organization of active rotors into strip-like aggregates is studied by carrying out computational simulations. The numerical and theoretical results demonstrate that the average width of the strips is linearly depend
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by Watari and Tsutahara [Phys Rev E textbf{67},036306