ﻻ يوجد ملخص باللغة العربية
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by Watari and Tsutahara [Phys Rev E textbf{67},036306(2003)], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.
We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E textbf{69}, 056702 (2004)] and an appropriate finite-difference scheme combine
A new multiple-relaxation-time lattice Boltzmann scheme for compressible flows with arbitrary specific heat ratio and Prandtl number is presented. In the new scheme, which is based on a two-dimensional 16-discrete-velocity model, the moment space and
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scal
We study the dynamics of the totally asymmetric exclusion process with open boundaries by phenomenological theories complemented by extensive Monte-Carlo simulations. Upon combining domain wall theory with a kinetic approach known as Boltzmann-Langev
We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. This model is based on a 16-discrete-velocity model. The collision step is first calculated in the moment space and then mapped