ترغب بنشر مسار تعليمي؟ اضغط هنا

Text Generation from Knowledge Graphs with Graph Transformers

369   0   0.0 ( 0 )
 نشر من قبل Rik Koncel-Kedziorski
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.



قيم البحث

اقرأ أيضاً

133 - Pei Ke , Haozhe Ji , Yu Ran 2021
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pr e-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.
We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating t he detection of global patterns. We represent the relation between two nodes as the length of the shortest path between them. Graformer learns to weight these node-node relations differently for different attention heads, thus virtually learning differently connected views of the input graph. We evaluate Graformer on two popular graph-to-text generation benchmarks, AGENDA and WebNLG, where it achieves strong performance while using many fewer parameters than other approaches.
This paper studies how to automatically generate a natural language text that describes the facts in knowledge graph (KG). Considering the few-shot setting, we leverage the excellent capacities of pretrained language models (PLMs) in language underst anding and generation. We make three major technical contributions, namely representation alignment for bridging the semantic gap between KG encodings and PLMs, relation-biased KG linearization for deriving better input representations, and multi-task learning for learning the correspondence between KG and text. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our model on KG-to-text generation task. In particular, our model outperforms all comparison methods on both fully-supervised and few-shot settings. Our code and datasets are available at https://github.com/RUCAIBox/Few-Shot-KG2Text.
Most of the existing text generative steganographic methods are based on coding the conditional probability distribution of each word during the generation process, and then selecting specific words according to the secret information, so as to achie ve information hiding. Such methods have their limitations which may bring potential security risks. Firstly, with the increase of embedding rate, these models will choose words with lower conditional probability, which will reduce the quality of the generated steganographic texts; secondly, they can not control the semantic expression of the final generated steganographic text. This paper proposes a new text generative steganography method which is quietly different from the existing models. We use a Knowledge Graph (KG) to guide the generation of steganographic sentences. On the one hand, we hide the secret information by coding the path in the knowledge graph, but not the conditional probability of each generated word; on the other hand, we can control the semantic expression of the generated steganographic text to a certain extent. The experimental results show that the proposed model can guarantee both the quality of the generated text and its semantic expression, which is a supplement and improvement to the current text generation steganography.
Knowledge graphs (KGs) can vary greatly from one domain to another. Therefore supervised approaches to both graph-to-text generation and text-to-graph knowledge extraction (semantic parsing) will always suffer from a shortage of domain-specific paral lel graph-text data; at the same time, adapting a model trained on a different domain is often impossible due to little or no overlap in entities and relations. This situation calls for an approach that (1) does not need large amounts of annotated data and thus (2) does not need to rely on domain adaptation techniques to work well in different domains. To this end, we present the first approach to unsupervised text generation from KGs and show simultaneously how it can be used for unsupervised semantic parsing. We evaluate our approach on WebNLG v2.1 and a new benchmark leveraging scene graphs from Visual Genome. Our system outperforms strong baselines for both text$leftrightarrow$graph conversion tasks without any manual adaptation from one dataset to the other. In additional experiments, we investigate the impact of using different unsupervised objectives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا