ﻻ يوجد ملخص باللغة العربية
The detection of the gravitational waves emitted in the capture process of a compact object by a massive black hole is known as an extreme-mass ratio inspiral (EMRI) and represents a unique probe of gravity in the strong regime and is one of the main targets of LISA. The possibility of observing a compact-object EMRI at the Galactic Centre (GC) when LISA is taking data is very low. However, the capture of a brown dwarf, an X-MRI, is more frequent because these objects are much more abundant and can plunge without being tidally disrupted. An X-MRI covers some $sim 10^8$ cycles before merger, and hence stay on band for millions of years. About $2times 10^6$ yrs before merger they have a signal-to-noise ratio (SNR) at the GC of 10. Later, $10^4$ yrs before merger, the SNR is of several thousands, and $10^3$ yrs before the merger a few $10^4$. Based on these values, this kind of EMRIs are also detectable at neighbour MBHs, albeit with fainter SNRs. We calculate the event rate of X-MRIs at the GC taking into account the asymmetry of pro- and retrograde orbits on the location of the last stable orbit. We estimate that at any given moment, and using a conservative approach, there are of the order of $gtrsim,20$ sources in band. From these, $gtrsim,5$ are circular and are located at higher frequencies, and about $gtrsim,15$ are highly eccentric and are at lower frequencies. Due to their proximity, X-MRIs represent a unique probe of gravity in the strong regime. The mass ratio for a X-MRI at the GC is $q sim 10^8$, i.e., three orders of magnitude larger than stellar-mass black hole EMRIs. Since backreaction depends on $q$, the orbit follows closer a standard geodesic, which means that approximations work better in the calculation of the orbit. X-MRIs can be sufficiently loud so as to track the systematic growth of their SNR, which can be high enough to bury that of MBH binaries.
One of the main targets of the Laser Interferometer Space Antenna (LISA) is the detection of extreme mass-ratio inspirals (EMRIs) and extremely large mass-ratio inspirals (X-MRIs). Their orbits are expected to be highly eccentric and relativistic whe
The detection of a gravitational capture of a stellar-mass compact object by a massive black hole (MBH) will allow us to test gravity in the strong regime. These sources form via two-body relaxation, by exchanging energy and angular momentum, and ins
The inspiral of stellar-mass compact objects, like neutron stars or stellar-mass black holes, into supermassive black holes provides a wealth of information about the strong gravitational-field regime via the emission of gravitational waves. In order
The extreme mass ratio inspiral (EMRI), defined as a stellar-mass compact object inspiraling into a supermassive black hole (SMBH), has been widely argued to be a low-frequency gravitational wave (GW) source. EMRIs providing accurate measurements of
Inspiral of compact stellar remnants into massive black holes (MBHs) is accompanied by the emission of gravitational waves at frequencies that are potentially detectable by space-based interferometers. Event rates computed from statistical (Fokker-Pl