ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Intermediate-Mass Ratio Inspirals From The Ground And Space

173   0   0.0 ( 0 )
 نشر من قبل Pau Amaro-Seoane
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pau Amaro-Seoane




اسأل ChatGPT حول البحث

The detection of a gravitational capture of a stellar-mass compact object by a massive black hole (MBH) will allow us to test gravity in the strong regime. These sources form via two-body relaxation, by exchanging energy and angular momentum, and inspiral in a slow, progressive way down to the final merger. The range of frequencies is localised in the range of millihertz in the case of MBH of masses $sim 10^6,M_{odot}$, i.e. that of space-borne gravitational-wave observatories such as LISA. In this article I show that, depending on their orbital parameters, intermediate-mass ratios (IMRIs) of MBH of masses between a hundred and a few thousand have frequencies that make them detectable (i) with ground-based observatories, or (ii) with both LISA and ground-based ones such as advanced LIGO/Virgo and third generation ones, with ET as an example. The binaries have a signal-to-noise ratio large enough to ensure detection. More extreme values in their orbital parameters correspond to systems detectable only with ground-based detectors and enter the LIGO/Virgo band in particular in many different harmonics for masses up to some $2000,,M_{odot}$. I show that environmental effects are negligible, so that the source should not have this kind of complication. The accumulated phase-shift is measurable with LISA and ET, and for some cases also with LIGO, so that it is possible to recover information about the eccentricity and formation scenario. For IMRIs with a total mass $lessapprox 2000,M_{odot}$ and initial eccentricities up to $0.999$, LISA can give a warning to ground-based detectors with enough time in advance and seconds of precision. The possibility of detecting IMRIs from the ground alone or combined with space-borne observatories opens new possibilities for gravitational wave astronomy.



قيم البحث

اقرأ أيضاً

155 - Pau Amaro-Seoane 2019
The detection of the gravitational waves emitted in the capture process of a compact object by a massive black hole is known as an extreme-mass ratio inspiral (EMRI) and represents a unique probe of gravity in the strong regime and is one of the main targets of LISA. The possibility of observing a compact-object EMRI at the Galactic Centre (GC) when LISA is taking data is very low. However, the capture of a brown dwarf, an X-MRI, is more frequent because these objects are much more abundant and can plunge without being tidally disrupted. An X-MRI covers some $sim 10^8$ cycles before merger, and hence stay on band for millions of years. About $2times 10^6$ yrs before merger they have a signal-to-noise ratio (SNR) at the GC of 10. Later, $10^4$ yrs before merger, the SNR is of several thousands, and $10^3$ yrs before the merger a few $10^4$. Based on these values, this kind of EMRIs are also detectable at neighbour MBHs, albeit with fainter SNRs. We calculate the event rate of X-MRIs at the GC taking into account the asymmetry of pro- and retrograde orbits on the location of the last stable orbit. We estimate that at any given moment, and using a conservative approach, there are of the order of $gtrsim,20$ sources in band. From these, $gtrsim,5$ are circular and are located at higher frequencies, and about $gtrsim,15$ are highly eccentric and are at lower frequencies. Due to their proximity, X-MRIs represent a unique probe of gravity in the strong regime. The mass ratio for a X-MRI at the GC is $q sim 10^8$, i.e., three orders of magnitude larger than stellar-mass black hole EMRIs. Since backreaction depends on $q$, the orbit follows closer a standard geodesic, which means that approximations work better in the calculation of the orbit. X-MRIs can be sufficiently loud so as to track the systematic growth of their SNR, which can be high enough to bury that of MBH binaries.
Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range $10^5 M_{odot} lesssim M lesssim 10^7 M_{odot}$ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio $qequiv M_2/M_1$, the disc viscosity ($alpha$), and gas temperature (or equivalently Mach number; $mathcal{M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $Sigma_0ge10^{4-6} rm , g cm^{-2}$, depending on $q$, $alpha$ and $mathcal{M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction.
The extreme mass ratio inspiral (EMRI), defined as a stellar-mass compact object inspiraling into a supermassive black hole (SMBH), has been widely argued to be a low-frequency gravitational wave (GW) source. EMRIs providing accurate measurements of black hole mass and spin, are one of the primary interests for Laser Interferometer Space Antenna (LISA). However, it is usually believed that there are no electromagnetic (EM) counterparts to EMRIs. Here we show a new formation channel of EMRIs with tidal disruption flares as EM counterparts. In this scenario, flares can be produced from the tidal stripping of the helium (He) envelope of a massive star by an SMBH. The left compact core of the massive star will evolve into an EMRI. We find that, under certain initial eccentricity and semimajor axis, the GW frequency of the inspiral can enter LISA band within 10 $sim$ 20 years, which makes the tidal disruption flare an EM precursor to EMRI. Although the event rate is just $2times 10^{-4}~rm Gpc^{-3}yr^{-1}$, this association can not only improve the localization accuracy of LISA and help to find the host galaxy of EMRI, but also serve as a new GW standard siren for cosmology.
The intermediate mass-ratio inspiral of a stellar compact remnant into an intermediate mass black hole (IMBH) can produce a gravitational wave (GW) signal that is potentially detectable by current ground-based GW detectors (e.g., Advanced LIGO) as we ll as by planned space-based interferometers (e.g., eLISA). Here, we present results from a direct integration of the post-Newtonian $N$-body equations of motion describing stellar clusters containing an IMBH and a population of stellar-mass black holes (BHs) and solar mass stars. We take particular care to simulate the dynamics closest to the IMBH, including post-Newtonian effects up to order $2.5$. Our simulations show that the IMBH readily forms a binary with a BH companion. This binary is gradually hardened by transient 3-body or 4-body encounters, leading to frequent substitutions of the BH companion, while the binarys eccentricity experiences large amplitude oscillations due to the Lidov-Kozai resonance. We also demonstrate suppression of these resonances by the relativistic precession of the binary orbit. We find an intermediate mass-ratio inspiral in one of the 12 cluster models we evolved for $sim 100$ Myr. This cluster hosts a $100 M_odot$ IMBH embedded in a population of 32 $10M_odot$ BH and 32,000 $1M_odot$ stars. At the end of the simulation, after $sim 100$ Myr of evolution, the IMBH merges with a BH companion. The IMBH--BH binary inspiral starts in the eLISA frequency window ($gtrsim 1rm mHz$) when the binary reaches an eccentricity $1-esimeq 10^{-3}$. After $simeq 10^5$ years the binary moves into the LIGO frequency band with a negligible eccentricity. We comment on the implications for GW searches, with a possible detection within the next decade.
Intermediate/Extreme mass ratio inspiral (IMRI/EMRI) system provides a good tool to test the nature of gravity in strong field. We construct the self-force and use the self-force method to generate accurate waveform templates for IMRIS/EMRIs on quasi -elliptical orbits in Brans-Dicke theory. The extra monopole and dipole emissions in Brans-Dicke theory accelerate the orbital decay, so the observations of gravitational waves may place stronger constraint on Brans-Dicke theory. With a two-year observations of gravitational waves emitted from IMRIs/EMRIs with LISA, we can get the most stringent constraint on the Brans-Dicke coupling parameter $omega_0>10^5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا