ﻻ يوجد ملخص باللغة العربية
Atomically thin two dimensional (2D) materials are promising candidates for miniaturized high-performance optoelectronic devices. Here, we report on multilayer MoTe2 photodetectors contacted with asymmetric electrodes based on n- and p-type graphene layers. The asymmetry in the graphene contacts creates a large (Ebi ~100 kV cm-1) built-in electric field across the short (l = 15 nm) MoTe2 channel, causing a high and broad (400 to 1400 nm) photoresponse even without any externally applied voltage. Spatially resolved photovoltage maps reveal an enhanced photoresponse and larger built-in electric field in regions of the MoTe2 layer between the two graphene contacts. Furthermore, a fast (~0.01 ms) photoresponse is achieved in both the photovoltaic and photoconductive operation modes of the junction. Our findings could be extended to other 2D materials and offer prospects for the implementation of asymmetric graphene contacts in future low-power optoelectronic applications.
We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external respo
We report vertically-illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the
Vertical heterostructures of van der Waals materials enable new pathways to tune charge and energy transport characteristics in nanoscale systems. We propose that graphene Schottky junctions can host a special kind of photoresponse which is character
Photodetectors are key optoelectronic building blocks performing the essential optical-to-electrical signal conversion, and unlike solar cells, operate at a specific wavelength and at high signal or sensory speeds. Towards achieving high detector per
Graphene-based photodetectors have shown responsivities up to 10$^8$A/W and photoconductive gains up to 10$^{8}$ electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity of graphene, which induces a shift of the